TY - JOUR
T1 - Potent Stimulation of the Androgen Receptor Instigates a Viral Mimicry Response in Prostate Cancer
AU - Alizadeh-Ghodsi, Mohammadreza
AU - Owen, Katie L.
AU - Townley, Scott L.
AU - Zanker, Damien
AU - Rollin, Samuel P. G.
AU - Hanson, Adrienne R.
AU - Shrestha, Raj
AU - Toubia, John
AU - Gargett, Tessa
AU - Chernukhin, Igor
AU - Luu, Jennii
AU - Cowley, Karla J.
AU - Clark, Ashlee
AU - Carroll, Jason S.
AU - Simpson, Kaylene J.
AU - Winter, Jean M.
AU - Lawrence, Mitchell G.
AU - Butler, Lisa M.
AU - Risbridger, Gail P.
AU - Thierry, Benjamin
AU - Taylor, Renea A.
AU - Hickey, Theresa E.
AU - Parker, Belinda S.
AU - Tilley, Wayne D.
AU - Selth, Luke A.
PY - 2022/7/25
Y1 - 2022/7/25
N2 - Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen deprivation therapy is a standard-of-care treatment for metastatic prostate cancer. Paradoxically, activation of AR can also inhibit the growth of prostate cancer in some patients and experimental systems, but the mechanisms underlying this phenomenon are poorly understood. This study exploited a potent synthetic androgen, methyltestosterone (MeT), to investigate AR agonist-induced growth inhibition. MeT strongly inhibited growth of prostate cancer cells expressing AR, but not AR-negative models. Genes and pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT induced a quantitatively greater androgenic response in prostate cancer cells. MeT potently downregulated DNA methyltransferases, leading to global DNA hypomethylation. These epigenomic changes were associated with dysregulation of transposable element expression, including upregulation of endogenous retrovirus (ERV) transcripts after sustained MeT treatment. Increased ERV expression led to accumulation of double-stranded RNA and a “viral mimicry” response characterized by activation of IFN signaling, upregulation of MHC class I molecules, and enhanced recognition of murine prostate cancer cells by CD8+ T cells. Positive associations between AR activity and ERVs/antiviral pathways were evident in patient transcriptomic data, supporting the clinical relevance of our findings. Collectively, our study reveals that the potent androgen MeT can increase the immunogenicity of prostate cancer cells via a viral mimicry response, a finding that has potential implications for the development of strategies to sensitize this cancer type to immunotherapies.Significance:Our study demonstrates that potent androgen stimulation of prostate cancer cells can elicit a viral mimicry response, resulting in enhanced IFN signaling. This finding may have implications for the development of strategies to sensitize prostate cancer to immunotherapies.
AB - Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen deprivation therapy is a standard-of-care treatment for metastatic prostate cancer. Paradoxically, activation of AR can also inhibit the growth of prostate cancer in some patients and experimental systems, but the mechanisms underlying this phenomenon are poorly understood. This study exploited a potent synthetic androgen, methyltestosterone (MeT), to investigate AR agonist-induced growth inhibition. MeT strongly inhibited growth of prostate cancer cells expressing AR, but not AR-negative models. Genes and pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT induced a quantitatively greater androgenic response in prostate cancer cells. MeT potently downregulated DNA methyltransferases, leading to global DNA hypomethylation. These epigenomic changes were associated with dysregulation of transposable element expression, including upregulation of endogenous retrovirus (ERV) transcripts after sustained MeT treatment. Increased ERV expression led to accumulation of double-stranded RNA and a “viral mimicry” response characterized by activation of IFN signaling, upregulation of MHC class I molecules, and enhanced recognition of murine prostate cancer cells by CD8+ T cells. Positive associations between AR activity and ERVs/antiviral pathways were evident in patient transcriptomic data, supporting the clinical relevance of our findings. Collectively, our study reveals that the potent androgen MeT can increase the immunogenicity of prostate cancer cells via a viral mimicry response, a finding that has potential implications for the development of strategies to sensitize this cancer type to immunotherapies.Significance:Our study demonstrates that potent androgen stimulation of prostate cancer cells can elicit a viral mimicry response, resulting in enhanced IFN signaling. This finding may have implications for the development of strategies to sensitize prostate cancer to immunotherapies.
KW - Prostate cancer
KW - androgen receptor (AR)
KW - methyltestosterone (MeT)
UR - http://www.scopus.com/inward/record.url?scp=85172429634&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1145777
UR - http://purl.org/au-research/grants/NHMRC/1138242
U2 - 10.1158/2767-9764.CRC-21-0139
DO - 10.1158/2767-9764.CRC-21-0139
M3 - Article
SN - 2767-9764
VL - 2
SP - 706
EP - 724
JO - Cancer Research Communications
JF - Cancer Research Communications
IS - 7
ER -