Prioritised learning in snowdrift-type games

Maria Kleshnina, Sabrina S. Streipert, Jerzy A. Filar, Krishnendu Chatterjee

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
10 Downloads (Pure)

Abstract

Cooperation is a ubiquitous and beneficial behavioural trait despite being prone to exploitation by free-riders. Hence, cooperative populations are prone to invasions by selfish individuals. However, a population consisting of only free-riders typically does not survive. Thus, cooperators and free-riders often coexist in some proportion. An evolutionary version of a Snowdrift Game proved its efficiency in analysing this phenomenon. However, what if the system has already reached its stable state but was perturbed due to a change in environmental conditions? Then, individuals may have to re-learn their effective strategies. To address this, we consider behavioural mistakes in strategic choice execution, which we refer to as incompetence. Parametrising the propensity to make such mistakes allows for a mathematical description of learning. We compare strategies based on their relative strategic advantage relying on both fitness and learning factors. When strategies are learned at distinct rates, allowing learning according to a prescribed order is optimal. Interestingly, the strategy with the lowest strategic advantage should be learnt first if we are to optimise fitness over the learning path. Then, the differences between strategies are balanced out in order to minimise the effect of behavioural uncertainty.

Original languageEnglish
Article number1945
Pages (from-to)1-20
Number of pages20
JournalMathematics
Volume8
Issue number11
DOIs
Publication statusPublished - Nov 2020
Externally publishedYes

Keywords

  • Cooperation
  • Evolutionary games
  • Incompetence
  • Learning
  • Snowdrift game

Fingerprint

Dive into the research topics of 'Prioritised learning in snowdrift-type games'. Together they form a unique fingerprint.

Cite this