Abstract
Catalytic hydrolysis is a sustainable method for the degradation of perfluorinated compounds (PFCs) but is challenged by the high reaction temperatures required to cleave strong C-F bonds. Herein, we developed an innovative C-F activation strategy by constructing synergistic Lewis and Brønsted acid pairs over atomically dispersed Zn-O-Al sites to promote C-F bond activation for decomposition of typical PFCs, CF4. Density functional theory (DFT) calculations demonstrate tricoordinated Al (AlIII) sites and Zn-OH functional, respectively, as Lewis and Brønsted acid sites over Zn-O-Al, synergistically enhancing the adsorption and decomposition of CF4. X-ray absorption spectroscopy (XAS), pyridine infrared spectroscopy (Py-IR), and ammonia temperature-programmed desorption (NH3-TPD) verified the presence of both AlIII and Zn-OH on the atomically dispersed Zn-O-Al sites. CF4-TPD and in situ infrared spectroscopy confirmed that the Zn-O-Al sites facilitate CF4 adsorption and C-F bond activation. As a result, the Zn-O-Al sites with synergistic Lewis and Brønsted acid pairs achieved 100% CF4 decomposition at a low temperature of 560 °C and demonstrated outstanding stability for more than 250 h.
Original language | English |
---|---|
Pages (from-to) | 7391-7399 |
Number of pages | 9 |
Journal | Journal of the American Chemical Society |
Volume | 147 |
Issue number | 9 |
Early online date | 19 Feb 2025 |
DOIs | |
Publication status | Published - 5 Mar 2025 |
Keywords
- Adsorption
- Bond activation
- Catalysts
- Organic reactions
- Toxicological synergy