Pushing the frontiers of T-cell vaccines: Accurate measurement of human T-cell responses

Fadi Saade, S Gorski, Nikolai Petrovsky

    Research output: Contribution to journalReview articlepeer-review

    24 Citations (Scopus)


    There is a need for novel approaches to tackle major vaccine challenges such as malaria, tuberculosis and HIV, among others. Success will require vaccines able to induce a cytotoxic T-cell response-a deficiency of most current vaccine approaches. The successful development of T-cell vaccines faces many hurdles, not least being the lack of consensus on a standardized T-cell assay format able to be used as a correlate of vaccine efficacy. Hence, there remains a need for reproducible measures of T-cell immunity proven in human clinical trials to correlate with vaccine protection. The T-cell equivalent of a neutralizing antibody assay would greatly accelerate the development and commercialization of T-cell vaccines. Recent advances have seen a plethora of new T-cell assays become available, including some like cytometry by time-of-flight with extreme multiparameter T-cell phenotyping capability. However, whether it is historic thymidine-based proliferation assays or sophisticated new cytometry assays, each assay has its relative advantages and disadvantages, and relatively few of these assays have yet to be validated in large-scale human vaccine trials. This review examines the current range of T-cell assays and assesses their suitability for use in human vaccine trials. Should one or more of these assays be accepted as an agreed surrogate of T-cell protection by a regulatory agency, this would significantly accelerate the development of T-cell vaccines.

    Original languageEnglish
    Pages (from-to)1459-1470
    Number of pages12
    JournalExpert Review of Vaccines
    Issue number12
    Publication statusPublished - Dec 2012


    • clinical trials
    • CTL
    • CYTOF
    • flow cytometry
    • T-cell assay
    • vaccine


    Dive into the research topics of 'Pushing the frontiers of T-cell vaccines: Accurate measurement of human T-cell responses'. Together they form a unique fingerprint.

    Cite this