Recombinant Filaggrin Is Internalized and Processed to Correct Filaggrin Deficiency

Thomas Stout, T McFarland, John Mitchell, Binoy Appukuttan, J Stout

    Research output: Contribution to journalArticle

    27 Citations (Scopus)

    Abstract

    This study was designed to engineer a functional filaggrin (FLG) monomer linked to a cell-penetrating peptide (RMR) and to test the ability of this peptide to penetrate epidermal tissue as a therapeutic strategy for genetically determined atopic dermatitis (AD). A single repeat of the murine filaggrin gene (Flg) was covalently linked to a RMR motif and cloned into a bacterial expression system for protein production. Purified FLG+RMR (mFLG+RMR) was applied in vitro to HEK-293T cells and a reconstructed human epidermis (RHE) tissue model. Immunochemistry demonstrated RMR-dependent cellular uptake of FLG+RMR in a dose- and time-dependent manner in HEK cells. Immunohistochemical staining of the RHE model identified penetration of FLG+RMR to the stratum granulosum, the epidermal layer at which FLG deficiency is thought to be pathologically relevant. In vivo application of FLG+RMR to FLG-deficient flaky tail (ft/ft) mice skin demonstrated internalization and processing of recombinant FLG+RMR to restore the normal phenotype. These results suggest that topically applied RMR-linked FLG monomers are able to penetrate epidermal tissue, be internalized into the appropriate cell type, and be processed to a size similar to wild-type functional barrier peptides to restore necessary barrier function, and prove to be therapeutic for patients with AD.

    Original languageEnglish
    Pages (from-to)423-429
    Number of pages7
    JournalJournal of Investigative Dermatology
    Volume134
    Issue number2
    DOIs
    Publication statusPublished - 2014

    Fingerprint Dive into the research topics of 'Recombinant Filaggrin Is Internalized and Processed to Correct Filaggrin Deficiency'. Together they form a unique fingerprint.

  • Cite this