Reconceptualizing the hyporheic zone for nonperennial rivers and streams

Amanda G. DelVecchia, Margaret Shanafield, Margaret A. Zimmer, Michelle H. Busch, Corey A. Krabbenhoft, Rachel Stubbington, Kendra E. Kaiser, Ryan M. Burrows, Jake Hosen, Thibault Datry, Stephanie K. Kampf, Samuel C. Zipper, Ken Fritz, Katie Costigan, Daniel C. Allen

Research output: Contribution to journalArticlepeer-review

Abstract

Nonperennial streams dominate global river networks and are increasing in occurrence across space and time. When surface flow ceases or the surface water dries, flow or moisture can be retained in the subsurface sediments of the hyporheic zone, supporting aquatic communities and ecosystem processes. However, hydrological and ecological definitions of the hyporheic zone have been developed in perennial rivers and emphasize the mixing of water and organisms from both the surface stream and groundwater. The adaptation of such definitions to include both humid and dry unsaturated conditions could promote characterization of how hydrological and biogeochemical variability shape ecological communities within nonperennial hyporheic zones, advancing our understanding of both ecosystem structure and function in these habitats. To conceptualize hyporheic zones for nonperennial streams, we review how water sources and surface and subsurface structure influence hydrological and physicochemical conditions. We consider the extent of this zone and how biogeochemistry and ecology might vary with surface states. We then link these components to the composition of nonperennial stream communities. Next, we examine literature to identify priorities for hydrological and ecological research exploring nonperennial hyporheic zones. Lastly, by integrating hydrology, biogeochemistry, and ecology, we recommend a multidisciplinary conceptualization of the nonperennial hyporheic zone as the porous subsurface streambed sediments that shift between lotic, lentic, humid, and dry conditions in space and time to support aquatic–terrestrial biodiversity. As river drying increases in extent because of global change, we call for holistic, interdisciplinary research across the terrestrial and aquatic sciences to apply this conceptualization to characterize hyporheic zone structure and function across the full spectrum of hydrological states.

Original languageEnglish
Pages (from-to)167-182
Number of pages16
JournalFreshwater Science
Volume41
Issue number2
Early online date22 Apr 2022
DOIs
Publication statusPublished - Jun 2022

Keywords

  • aquatic–terrestrial transition zone
  • dry rivers
  • ecotone
  • hyporheic
  • intermittent river
  • intermittent stream
  • nonperennial stream
  • ephemeral stream
  • riverbed sediments
  • subsurface sediments
  • temporary river
  • temporary stream

Fingerprint

Dive into the research topics of 'Reconceptualizing the hyporheic zone for nonperennial rivers and streams'. Together they form a unique fingerprint.

Cite this