TY - JOUR
T1 - Respiratory muscle activity in voluntary breathing tracking tasks
T2 - Implications for the assessment of respiratory motor control
AU - Hudson, Anna L.
AU - Walsh, Lee D.
AU - Gandevia, Simon C.
AU - Butler, Jane E.
PY - 2020/3
Y1 - 2020/3
N2 - How the involuntary (bulbospinal) and voluntary (corticospinal) pathways interact in respiratory muscle control is not established. To determine the role of excitatory corticobulbar pathways in humans, studies typically compare electromyographic activity (EMG) or evoked responses in respiratory muscles during hypercapnic and voluntary tasks. Although ventilation is matched between tasks by having participants track signals of ventilation, these tasks may not result in matched respiratory muscle activity. The aim of this study was to describe respiratory muscle activity and ribcage and abdominal excursions during two different voluntary conditions, compared to hypercapnic hyperventilation. Ventilation was matched in the voluntary conditions via (i) a simple target of lung volume (‘volume tracking’) or (ii) targets of both ribcage and abdominal excursions, adjusted to end-expiratory lung volume in hypercapnic hyperventilation (‘bands tracking’). Compared to hypercapnic hyperventilation, respiratory parameters such as tidal volume were similar, but the ratio of ribcage to abdominal excursion was higher for both voluntary tasks. Inspiratory scalene and parasternal intercostal muscle activity was higher in volume tracking, but diaphragm and abdominal muscle activity showed little to no change. There were no differences in muscle activity in bands tracking for any muscle, compared to hypercapnic hyperventilation. An elevated ratio of ribcage to abdominal excursion in the bands tracking task indicates that participants could not accurately match the targets in this condition. Inspiratory muscle activity is altered in some muscles in some voluntary tasks, compared to hypercapnia. Therefore, differences in muscle activity should be considered in interpretation of studies that use these protocols to investigate respiratory muscle control.
AB - How the involuntary (bulbospinal) and voluntary (corticospinal) pathways interact in respiratory muscle control is not established. To determine the role of excitatory corticobulbar pathways in humans, studies typically compare electromyographic activity (EMG) or evoked responses in respiratory muscles during hypercapnic and voluntary tasks. Although ventilation is matched between tasks by having participants track signals of ventilation, these tasks may not result in matched respiratory muscle activity. The aim of this study was to describe respiratory muscle activity and ribcage and abdominal excursions during two different voluntary conditions, compared to hypercapnic hyperventilation. Ventilation was matched in the voluntary conditions via (i) a simple target of lung volume (‘volume tracking’) or (ii) targets of both ribcage and abdominal excursions, adjusted to end-expiratory lung volume in hypercapnic hyperventilation (‘bands tracking’). Compared to hypercapnic hyperventilation, respiratory parameters such as tidal volume were similar, but the ratio of ribcage to abdominal excursion was higher for both voluntary tasks. Inspiratory scalene and parasternal intercostal muscle activity was higher in volume tracking, but diaphragm and abdominal muscle activity showed little to no change. There were no differences in muscle activity in bands tracking for any muscle, compared to hypercapnic hyperventilation. An elevated ratio of ribcage to abdominal excursion in the bands tracking task indicates that participants could not accurately match the targets in this condition. Inspiratory muscle activity is altered in some muscles in some voluntary tasks, compared to hypercapnia. Therefore, differences in muscle activity should be considered in interpretation of studies that use these protocols to investigate respiratory muscle control.
KW - Control of breathing
KW - Involuntary
KW - Respiratory muscles
KW - Voluntary
UR - http://www.scopus.com/inward/record.url?scp=85075381864&partnerID=8YFLogxK
U2 - 10.1016/j.resp.2019.103353
DO - 10.1016/j.resp.2019.103353
M3 - Article
C2 - 31760130
AN - SCOPUS:85075381864
SN - 1569-9048
VL - 274
JO - Respiratory Physiology and Neurobiology
JF - Respiratory Physiology and Neurobiology
M1 - 103353
ER -