Reversing RAFT Polymerization: Near-Quantitative Monomer Generation Via a Catalyst-Free Depolymerization Approach

Hyun Suk Wang, Nghia P. Truong, Zhipeng Pei, Michelle L. Coote, Athina Anastasaki

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
11 Downloads (Pure)


The ability to reverse controlled radical polymerization and regenerate the monomer would be highly beneficial for both fundamental research and applications, yet this has remained very challenging to achieve. Herein, we report a near-quantitative (up to 92%) and catalyst-free depolymerization of various linear, bulky, cross-linked, and functional polymethacrylates made by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Key to our approach is to exploit the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of both conventional (e.g., poly(methyl methacrylate)) and bulky (e.g., poly(oligo(ethylene glycol) methyl ether methacrylate)) polymers. Importantly, the depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. This work expands the potential of polymers made by controlled radical polymerization, pushes the boundaries of depolymerization, offers intriguing mechanistic aspects, and enables new applications.

Original languageEnglish
Pages (from-to)4678-4684
Number of pages7
JournalJournal of The American Chemical Society
Issue number10
Publication statusPublished - 16 Mar 2022
Externally publishedYes


  • RAFT Polymerization
  • monomer
  • near-quantitative
  • catalyst-free depolymerization
  • reversible addition–fragmentation chain-transfer
  • RAFT
  • polymers


Dive into the research topics of 'Reversing RAFT Polymerization: Near-Quantitative Monomer Generation Via a Catalyst-Free Depolymerization Approach'. Together they form a unique fingerprint.

Cite this