Abstract
Airway surgery presents a unique environment for operating room fire to occur. This study aims to explore the factors of combustion when using KTP laser with high flow oxygen in an ex-vivo model. The variables tested were varying tissue type, tissue condition, oxygen concentration, laser setting, and smoke evacuation in a stainless-steel model. Outcome measures were time of lasing to the first spark and/or flame. A multivariate Cox proportional hazard model was used to determine the risk of spark and flame across the different risk factors. For every 10% increase in oxygen concentration above 60% the risk of flame increased by a factor of 2.3. Continuous laser setting at 2.6 W increased the risk by a factor of 72.8. The risk of lasing adipose tissue is 7.3 times higher than that of muscle. Charred tissue increases the risk of flame by a factor of 92.8. Flame occurred without a preceding spark 93.6% of the time. Using KTP laser in the pulsed mode with low wattages, minimising lasing time, reducing the oxygen concentration and avoiding lasing adipose or charred tissue produce a relatively low estimated risk of spark or flame.
Original language | English |
---|---|
Article number | 543 |
Number of pages | 9 |
Journal | Scientific Reports |
Volume | 12 |
DOIs | |
Publication status | Published - 11 Jan 2022 |
Keywords
- laryngeal surgery
- KTP laser
- high flow oxygen
- airway fire
- endotracheal tubes (ETT)
- THRIVE