Rotational and angular distributions of NO products from NO-Rg (Rg = He, Ne, Ar) complex photodissociation

Heather Holmes-Ross, Rebecca Valenti, Hua-Gen Yu, Gregory Hall, Warren Lawrance

    Research output: Contribution to journalArticle

    6 Citations (Scopus)

    Abstract

    We present the results of an investigation into the rotational and angular distributions of the NO à state fragment following photodissociation of the NO-He, NO-Ne, and NO-Ar van der Waals complexes excited via the à ← X∼ transition. For each complex, the dissociation is probed for several values of Ea, the available energy above the dissociation threshold. For NO-He, the Ea values probed were 59, 172, and 273 cm-1; for NO-Ne they were 50 and 166 cm-1; and for NO-Ar they were 44, 94, 194, and 423 cm-1. The NO à state rotational distributions arising from NO-He are cold, with most products in low angular momentum states. NO-Ne leads to broader NO rotational distributions but they do not extend to the maximum possible given the energy available. In the case of NO-Ar, the distributions extend to the maximum allowed at that energy and show the unusual shapes associated with the rotational rainbow effect reported in previous studies. This is the only complex for which a rotational rainbow effect is observed at the chosen Ea values. Product angular distributions have also been measured for the NO à photodissociation product for the three complexes. NO-He produces nearly isotropic fragments, but the anisotropy parameter, β, for NO-Ne and NO-Ar photofragments shows a surprising change in sign from negative to positive as Ea increases within the unstructured excitation profile. Franck-Condon selection of a broader distribution of geometries including more linear geometries at lower excitation energies and more T-shaped geometries at higher energies can account for the changing recoil anisotropy. Two-dimensional wavepacket calculations are reported to model the rotational state distributions and the bound-continuum absorption spectra.

    Original languageEnglish
    Article number044309
    Pages (from-to)Art: 044309
    Number of pages11
    JournalJournal of Chemical Physics
    Volume144
    Issue number4
    DOIs
    Publication statusPublished - 2016

    Fingerprint Dive into the research topics of 'Rotational and angular distributions of NO products from NO-Rg (Rg = He, Ne, Ar) complex photodissociation'. Together they form a unique fingerprint.

  • Cite this