Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease

Charlotte Rigauts, Juliana Aizawa, Steven L. Taylor, Geraint B. Rogers, Matthias Govaerts, Paul Cos, Lisa Ostyn, Sarah Sims, Eva Vandeplassche, Mozes Sze, Yves Dondelinger, Lars Vereecke, Heleen Van Acker, Jodie L. Simpson, Lucy Burr, Anne Willems, Michael M. Tunney, Cristina Cigana, Alessandra Bragonzi, Tom CoenyeAurélie Crabbé

Research output: Contribution to journalArticlepeer-review

87 Citations (Scopus)
51 Downloads (Pure)

Abstract

Background: Chronic airway inflammation is the main driver of pathogenesis in respiratory diseases such as severe asthma, chronic obstructive pulmonary disease, cystic fibrosis (CF) and bronchiectasis. While the role of common pathogens in airway inflammation is widely recognised, the influence of other microbiota members is still poorly understood. 

Methods: We hypothesised that the lung microbiota contains bacteria with immunomodulatory activity which modulate net levels of immune activation by key respiratory pathogens. Therefore, we assessed the immunomodulatory effect of several members of the lung microbiota frequently reported as present in CF lower respiratory tract samples. 

Results: We show that Rothia mucilaginosa, a common resident of the oral cavity that is also often detectable in the lower airways in chronic disease, has an inhibitory effect on pathogenor lipopolysaccharide-induced pro-inflammatory responses, in vitro (three-dimensional cell culture model) and in vivo (mouse model). Furthermore, in a cohort of adults with bronchiectasis, the abundance of Rothia species was negatively correlated with pro-inflammatory markers (interleukin (IL)-8 and IL-1β) and matrix metalloproteinase (MMP)-1, MMP-8 and MMP-9 in sputum. Mechanistic studies revealed that R. mucilaginosa inhibits NF-κB pathway activation by reducing the phosphorylation of IκBα and consequently the expression of NF-κB target genes. 

Conclusions: These findings indicate that the presence of R. mucilaginosa in the lower airways potentially mitigates inflammation, which could in turn influence the severity and progression of chronic respiratory disorders.

Original languageEnglish
Article number2101293
Number of pages16
JournalEuropean Respiratory Journal
Volume59
Issue number5
DOIs
Publication statusPublished - May 2022

Keywords

  • Respiratory infections
  • tuberculosis
  • chronic lung disease

Fingerprint

Dive into the research topics of 'Rothia mucilaginosa is an anti-inflammatory bacterium in the respiratory tract of patients with chronic lung disease'. Together they form a unique fingerprint.

Cite this