Abstract
Understanding the spatial ecology and habitat-use of Lake Erie's commercially important walleye (Sander vitreus) population is imperative due to their large-scale seasonal migrations (>400 km) exposing them to five different jurisdictions in the USA and Canada. The objective of this study was to determine the habitat selected by walleye throughout the year and across Lake Erie. Here, we used acoustic telemetry to estimate walleye occurrence at three lake depth categories that were pertinent to biology (e.g., spawning) and management (e.g., quota allocation). Detection data from 851 adults during five continuous years identified consistent seasonal fluctuations in habitat selection across western (WB) and eastern (EB) basin walleye stocks. Sex-specific differences were also found during spawning periods (March-May) when males showed a stronger affinity to shallow waters <6 m than females. Also, EB stocks selected these shallow waters longer than WB stocks, likely due to differences in thermal patterns between basins. Deep water (>13 m) was readily selected between spring and winter (>6 months/year) for most WB and EB walleye despite stock-specific migration patterns. This study provides novel information about the space use patterns of one of the most economically important fish in North America at spatial and temporal scales relevant to management.
Original language | English |
---|---|
Pages (from-to) | 609-621 |
Number of pages | 13 |
Journal | Journal of Great Lakes Research |
Volume | 46 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2020 |
Externally published | Yes |
Keywords
- Depth preference
- GAMM
- GLATOS
- Movement
- Total allowable catch
- Tracking