Shape tuning and size prediction of millimeter-scale calcium-alginate capsules with aqueous core

Jinchao Zhao, Qing Guo, Wei Huang, Teng Zhang, Jing Wang, Yu Zhang, Leping Huang, Youhong Tang

Research output: Contribution to journalArticlepeer-review

Abstract

Controllable feature and size, good mechanical stability and intelligent release behavior is the capsule products relentless pursuit of the goal. In addition, to illustrate the quantitative relationship of structure and performance is also important for encapsulation technology development. In this study, the sphericity and size of millimeter-scale calcium sodium alginate capsules (mm-CaSA-Caps) with aqueous core were well tuned by manipulating the viscosity, surface tension, and density of CaCl2/carboxyl methyl cellulose (CMC) drops and sodium alginate (SA) solution. The well-tuned mm-CaSA-Caps showed significant mechanical and control-releasing property effects. The results showed that the prepared mm-CaSA-Caps were highly monodispersed with average diameter from 3.8 to 4.8 mm. The viscosity of the SA solution and the viscosity and surface tension of the CaCl2/CMC solution had significant effects on the mm-CaSA-Caps sphericity. Uniform and spherical mm-CaSA-Caps could be formed with high viscosity CaCl2/CMC solution (between 168.5 and 917.5 mPas), low viscosity SA solution (between 16.2 and 72.0 mPas) and decreased surface tension SA solution (by adding 0.01 wt. % poloxamer 407). The diameter of the mm-CaSA-Caps could be predicted by a modified Tate's law, which correlated well with the experimental data. The Caps with sphericity factor (SF) < 0.07 had better mechanical stability, with the crushing force 2.91-15.5 times and the surface Young's modulus 2.1-3.99 times higher than those of the non-spherical Caps (SF > 0.07). Meanwhile, the spherical Caps had a more even permeation rate, which was helpful in producing uniform and sustained releasing applications in foodstuff, medicine, agriculture and chemical industry.

Original languageEnglish
Article number688
Pages (from-to)1-16
Number of pages16
JournalPolymers
Volume12
Issue number3
DOIs
Publication statusPublished - 19 Mar 2020

Keywords

  • Calcium-alginate capsules
  • Drug release
  • Mechanical stability
  • Size
  • Tonsley

Fingerprint Dive into the research topics of 'Shape tuning and size prediction of millimeter-scale calcium-alginate capsules with aqueous core'. Together they form a unique fingerprint.

Cite this