TY - JOUR
T1 - Socio-economic and spatial inequalities in animal sources of iron-rich foods consumption among children 6-23 months old in Ethiopia
T2 - A decomposition analysis
AU - Belay, Daniel G.
AU - Wassie, Molla M.
AU - Alemu, Melaku Birhanu
AU - Merid, Mehari Woldemariam
AU - Norman, Richard
AU - Tessema, Gizachew A.
PY - 2024/5/16
Y1 - 2024/5/16
N2 - Iron deficiency anaemia is the most common type of anaemia in young children which can lead to long-term health consequences such as reduced immunity, impaired cognitive development, and school performance. As children experience rapid growth, they require a greater supply of iron from iron-rich foods to support their development. In addition to the low consumption of iron-rich foods in low- and lower-middle-income countries, there are also regional and socio-economic disparities. This study aimed to assess contributing factors of wealth-related inequality and geographic variations in animal sources of iron-rich food consumption among children aged 6-23 months in Ethiopia. We used data from the Ethiopian Mini Demographic and Health Surveys (EMDHS) 2019, a national survey conducted using stratified sampling techniques. A total of 1, 461 children of age 6-23 months were included in the study. Iron-rich animal sources of food consumption were regarded when parents/caregivers reported that a child took at least one of the four food items identified as iron-rich food: 1) eggs, 2) meat (beef, lamb, goat, or chicken), 3) fresh or dried fish or shellfish, and 4) organs meat such as heart or liver. Concentration indices and curves were used to assess wealth-related inequalities. A Wagstaff decomposition analysis was applied to identify the contributing factors for wealth-related inequality of iron-rich animal source foods consumption. We estimated the elasticity of wealth-related inequality for a percentage change in socioeconomic variables. A spatial analysis was then used to map the significant cluster areas of iron-rich animal source food consumption among children in Ethiopia. The proportion of children who were given iron-rich animal-source foods in Ethiopia is 24.2% (95% CI: 22.1%, 26.5%), with figures ranging from 0.3% in Dire Dawa to 37.8% in the Oromia region. Children in poor households disproportionately consume less iron-rich animal-source foods than those in wealthy households, leading to a pro-rich wealth concentration index (C) = 0.25 (95% CI: 0.12, 0.37). The decomposition model explained approximately 70% of the estimated socio-economic inequality. About 21% of the wealth-related inequalities in iron-rich animal source food consumption in children can be explained by having primary or above education status of women. Mother's antenatal care (ANC) visits (14.6%), living in the large central and metropolitan regions (12%), household wealth index (10%), and being in the older age group (12-23 months) (2.4%) also contribute to the wealth-related inequalities. Regions such as Afar, Eastern parts of Amhara, and Somali were geographic clusters with low iron-rich animal source food consumption. There is a low level of iron-rich animal source food consumption among children, and it is disproportionately concentrated in the rich households (pro-rich distribution) in Ethiopia. Maternal educational status, having ANC visits, children being in the older age group (12-23 months), and living in large central and metropolitan regions were significant contributors to these wealth-related inequalities in iron-rich animal source foods consumption. Certain parts of Ethiopia such as, Afar, Eastern parts of Amhara, and Somali should be considered priority areas for nutritional interventions to increase children's iron-rich animal source foods consumption.
AB - Iron deficiency anaemia is the most common type of anaemia in young children which can lead to long-term health consequences such as reduced immunity, impaired cognitive development, and school performance. As children experience rapid growth, they require a greater supply of iron from iron-rich foods to support their development. In addition to the low consumption of iron-rich foods in low- and lower-middle-income countries, there are also regional and socio-economic disparities. This study aimed to assess contributing factors of wealth-related inequality and geographic variations in animal sources of iron-rich food consumption among children aged 6-23 months in Ethiopia. We used data from the Ethiopian Mini Demographic and Health Surveys (EMDHS) 2019, a national survey conducted using stratified sampling techniques. A total of 1, 461 children of age 6-23 months were included in the study. Iron-rich animal sources of food consumption were regarded when parents/caregivers reported that a child took at least one of the four food items identified as iron-rich food: 1) eggs, 2) meat (beef, lamb, goat, or chicken), 3) fresh or dried fish or shellfish, and 4) organs meat such as heart or liver. Concentration indices and curves were used to assess wealth-related inequalities. A Wagstaff decomposition analysis was applied to identify the contributing factors for wealth-related inequality of iron-rich animal source foods consumption. We estimated the elasticity of wealth-related inequality for a percentage change in socioeconomic variables. A spatial analysis was then used to map the significant cluster areas of iron-rich animal source food consumption among children in Ethiopia. The proportion of children who were given iron-rich animal-source foods in Ethiopia is 24.2% (95% CI: 22.1%, 26.5%), with figures ranging from 0.3% in Dire Dawa to 37.8% in the Oromia region. Children in poor households disproportionately consume less iron-rich animal-source foods than those in wealthy households, leading to a pro-rich wealth concentration index (C) = 0.25 (95% CI: 0.12, 0.37). The decomposition model explained approximately 70% of the estimated socio-economic inequality. About 21% of the wealth-related inequalities in iron-rich animal source food consumption in children can be explained by having primary or above education status of women. Mother's antenatal care (ANC) visits (14.6%), living in the large central and metropolitan regions (12%), household wealth index (10%), and being in the older age group (12-23 months) (2.4%) also contribute to the wealth-related inequalities. Regions such as Afar, Eastern parts of Amhara, and Somali were geographic clusters with low iron-rich animal source food consumption. There is a low level of iron-rich animal source food consumption among children, and it is disproportionately concentrated in the rich households (pro-rich distribution) in Ethiopia. Maternal educational status, having ANC visits, children being in the older age group (12-23 months), and living in large central and metropolitan regions were significant contributors to these wealth-related inequalities in iron-rich animal source foods consumption. Certain parts of Ethiopia such as, Afar, Eastern parts of Amhara, and Somali should be considered priority areas for nutritional interventions to increase children's iron-rich animal source foods consumption.
KW - Iron deficiency
KW - anaemia
KW - nutrition
KW - diet
KW - Ethiopia
UR - http://www.scopus.com/inward/record.url?scp=85195446868&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/2009050
U2 - 10.1371/journal.pgph.0003217
DO - 10.1371/journal.pgph.0003217
M3 - Article
AN - SCOPUS:85195446868
SN - 2767-3375
VL - 4
JO - PLOS Global Public Health
JF - PLOS Global Public Health
IS - 5
M1 - e0003217
ER -