Square lattice self-avoiding walks and biased differential approximants

Iwan Jensen

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


The model of self-avoiding lattice walks and the asymptotic analysis of power-series have been two of the major research themes of Tony Guttmann. In this paper we bring the two together and perform a new analysis of the generating functions for the number of square lattice self-avoiding walks and some of their metric properties such as the mean-square end-to-end distance. The critical point x c for self-avoiding walks is known to a high degree of accuracy and we utilise this knowledge to undertake a new numerical analysis of the series using biased differential approximants. The new method is major advance in asymptotic power-series analysis in that it allows us to bias differential approximants to have a singularity of order q at x c . When biasing at x c with q ≥ 2 the analysis yields a very accurate estimate for the critical exponent γ = 1.343 7500(3) thus confirming the conjectured exact value γ = 43/32 to eight significant digits and removing a long-standing minor discrepancy between exact and numerical results. The analysis of the mean-square end-to-end distance yields thus confirming the exact value ≠ = 3/4 to seven significant digits.

Original languageEnglish
Article number424003
Pages (from-to)424003
Number of pages13
JournalJournal of Physics. A. Mathematical and Theoretical
Issue number42
Publication statusPublished - 28 Sep 2016


  • asymptotic series analysis
  • critical exponents
  • power-series expansions
  • self-avoiding walks


Dive into the research topics of 'Square lattice self-avoiding walks and biased differential approximants'. Together they form a unique fingerprint.

Cite this