TY - JOUR
T1 - Stochastic correction of carbon-14 activities: A Bayesian approach with argon-39 validation
AU - McCallum, James
AU - Dogramaci, Shawan
AU - Cook, Peter
AU - Banks, Eddie
AU - Purtschert, Roland
AU - Irvine, Michelle
AU - Simmons, Craig
AU - Burk, Lawrence
PY - 2018/11
Y1 - 2018/11
N2 - Carbon-14 (14C) has been measured in groundwater for over half a century and remains a widely used tool for understanding groundwater flow systems. Ultimately, the usefulness of 14C as a groundwater tracer relies on the ability to distinguish between changes in concentration due to various chemical/physical processes (e.g. chemical reactions with solid carbonate material, conditions at the water table), and changes due to ageing along flow paths, the latter being most informative of groundwater flow conditions. To this end, a number of correction methodologies have been developed to account for chemical modifications in groundwater systems. In this paper, we implement two different single sample correction models, one for closed and one for open system carbonate dissolution in conjunction with a Markov chain Monte Carlo (MCMC) approach at two sites; the sedimentary Port Willunga Formation Aquifer in South Australia and a fractured rock aquifer in the Hamersley Basin, northwest Australia. For comparison, we include argon-39 (39Ar) data taken from some of the wells sampled and use a mixing envelope constraint in the MCMC procedure. We found that considering all of the errors associated with 14C correction resulted in a distribution of values to consider for groundwater dating procedures. When accounting for all parameters associated with single sample correction techniques, the associated error was 10 times greater than the analytical errors. Additionally, inclusion of the 39Ar data produced mixed results, with little improvement observed in the Port Willunga Aquifer (closed system correction), and a significant improvement observed at the Hamersley site (open system). This is most likely due to the mixing caused by long screens and the sensitivity of the open system correction model. Our results highlight the importance of considering all sources of error in groundwater dating studies.
AB - Carbon-14 (14C) has been measured in groundwater for over half a century and remains a widely used tool for understanding groundwater flow systems. Ultimately, the usefulness of 14C as a groundwater tracer relies on the ability to distinguish between changes in concentration due to various chemical/physical processes (e.g. chemical reactions with solid carbonate material, conditions at the water table), and changes due to ageing along flow paths, the latter being most informative of groundwater flow conditions. To this end, a number of correction methodologies have been developed to account for chemical modifications in groundwater systems. In this paper, we implement two different single sample correction models, one for closed and one for open system carbonate dissolution in conjunction with a Markov chain Monte Carlo (MCMC) approach at two sites; the sedimentary Port Willunga Formation Aquifer in South Australia and a fractured rock aquifer in the Hamersley Basin, northwest Australia. For comparison, we include argon-39 (39Ar) data taken from some of the wells sampled and use a mixing envelope constraint in the MCMC procedure. We found that considering all of the errors associated with 14C correction resulted in a distribution of values to consider for groundwater dating procedures. When accounting for all parameters associated with single sample correction techniques, the associated error was 10 times greater than the analytical errors. Additionally, inclusion of the 39Ar data produced mixed results, with little improvement observed in the Port Willunga Aquifer (closed system correction), and a significant improvement observed at the Hamersley site (open system). This is most likely due to the mixing caused by long screens and the sensitivity of the open system correction model. Our results highlight the importance of considering all sources of error in groundwater dating studies.
KW - Argon-39
KW - Carbon-14
KW - Correction models
KW - Groundwater dating
UR - https://doi.org/10.1016/j.jhydrol.2018.08.047
UR - http://www.scopus.com/inward/record.url?scp=85053828433&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2018.08.047
DO - 10.1016/j.jhydrol.2018.08.047
M3 - Article
SN - 0022-1694
VL - 566
SP - 396
EP - 405
JO - Journal of Hydrology
JF - Journal of Hydrology
IS - November 2018
ER -