Subregional differences in GABAA receptor subunit expression in the rostral ventrolateral medulla of sedentary versus physically active rats

Patrick J. Mueller, Bozena E. Fyk-Kolodziej, Toni A. Azar, Ida J. Llewellyn-Smith

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Neurons in the rostral ventrolateral medulla (RVLM) regulate blood pressure through direct projections to spinal sympathetic preganglionic neurons. Only some RVLM neurons are active under resting conditions due to significant, tonic inhibition by gamma-aminobutyric acid (GABA). Withdrawal of GABAA receptor-mediated inhibition of the RVLM increases sympathetic outflow and blood pressure substantially, providing a mechanism by which the RVLM could contribute chronically to cardiovascular disease (CVD). Here, we tested the hypothesis that sedentary conditions, a major risk factor for CVD, increase GABAA receptors in RVLM, including its rostral extension (RVLMRE), both of which contain bulbospinal catecholamine (C1) and non-C1 neurons. We examined GABAA receptor subunits GABAAα1 and GABAAα2 in the RVLM/RVLMRE of sedentary or physically active (10–12 weeks of wheel running) rats. Western blot analyses indicated that sedentary rats had lower expression of GABAAα1 and GABAAα2 subunits in RVLM but only GABAAα2 was lower in the RVLMRE of sedentary rats. Sedentary rats had significantly reduced expression of the chloride transporter, KCC2, suggesting less effective GABA-mediated inhibition compared to active rats. Retrograde tracing plus triple-label immunofluorescence identified fewer bulbospinal non-C1 neurons immunoreactive for GABAAα1 but a higher percentage of bulbospinal C1 neurons immunoreactive for GABAAα1 in sedentary animals. Sedentary conditions did not significantly affect the number of bulbospinal C1 or non-C1 neurons immunoreactive for GABAAα2. These results suggest a complex interplay between GABAA receptor expression by spinally projecting C1 and non-C1 neurons and sedentary versus physically active conditions. They also provide plausible mechanisms for both enhanced sympathoexcitatory and sympathoinhibitory responses following sedentary conditions.

Original languageEnglish
Pages (from-to)1053-1075
Number of pages23
JournalJournal of Comparative Neurology
Issue number6
Publication statusPublished - 1 Apr 2020


  • brainstem
  • GABA receptors
  • inactivity
  • neuroplasticity
  • RRID:AB_2039862
  • RRID:AB_2039864
  • RRID:AB_2336904
  • RRID:AB_310611
  • sympathetic nerve activity


Dive into the research topics of 'Subregional differences in GABAA receptor subunit expression in the rostral ventrolateral medulla of sedentary versus physically active rats'. Together they form a unique fingerprint.

Cite this