TY - JOUR
T1 - Surface Passivation of Sputtered NiOxUsing a SAM Interface Layer to Enhance the Performance of Perovskite Solar Cells
AU - Alghamdi, Amira R.M.
AU - Yanagida, Masatoshi
AU - Shirai, Yasuhiro
AU - Andersson, Gunther G.
AU - Miyano, Kenjiro
PY - 2022/4/12
Y1 - 2022/4/12
N2 - Sputtered NiOx (sp-NiOx) is a preferred hole transporting material for perovskite solar cells because of its hole mobility, ease of manufacturability, good stability, and suitable Fermi level for hole extraction. However, uncontrolled defects in sp-NiOx can limit the efficiency of solar cells fabricated with this hole transporting layer. An interfacial layer has been proposed to modify the sp-NiOx/perovskite interface, which can contribute to improving the crystallinity of the perovskite film. Herein, a 2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) self-assembled monolayer was used to modify an sp-NiOx surface. We found that the MeO-2PACz interlayer improves the quality of the perovskite film due to an enlarged domain size, reduced charge recombination at the sp-NiOx/perovskite interface, and passivation of the defects in sp-NiOx surfaces. In addition, the band tail states are also reduced, as indicated by photothermal deflection spectroscopy, which thus indicates a reduction in defect levels. The overall outcome is an improvement in the device efficiency from 11.9% to 17.2% due to the modified sp-NiOx/perovskite interface, with an active area of 1 cm2 (certified efficiency of 16.25%). On the basis of these results, the interfacial engineering of the electronic properties of sp-NiOx/MeO-2PACz/perovskite is discussed in relation to the improved device performance.
AB - Sputtered NiOx (sp-NiOx) is a preferred hole transporting material for perovskite solar cells because of its hole mobility, ease of manufacturability, good stability, and suitable Fermi level for hole extraction. However, uncontrolled defects in sp-NiOx can limit the efficiency of solar cells fabricated with this hole transporting layer. An interfacial layer has been proposed to modify the sp-NiOx/perovskite interface, which can contribute to improving the crystallinity of the perovskite film. Herein, a 2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) self-assembled monolayer was used to modify an sp-NiOx surface. We found that the MeO-2PACz interlayer improves the quality of the perovskite film due to an enlarged domain size, reduced charge recombination at the sp-NiOx/perovskite interface, and passivation of the defects in sp-NiOx surfaces. In addition, the band tail states are also reduced, as indicated by photothermal deflection spectroscopy, which thus indicates a reduction in defect levels. The overall outcome is an improvement in the device efficiency from 11.9% to 17.2% due to the modified sp-NiOx/perovskite interface, with an active area of 1 cm2 (certified efficiency of 16.25%). On the basis of these results, the interfacial engineering of the electronic properties of sp-NiOx/MeO-2PACz/perovskite is discussed in relation to the improved device performance.
KW - Oxides
KW - Defects
KW - Interfaces
KW - Perovskites
KW - Layers
UR - http://www.scopus.com/inward/record.url?scp=85127938706&partnerID=8YFLogxK
U2 - 10.1021/acsomega.2c00509
DO - 10.1021/acsomega.2c00509
M3 - Article
AN - SCOPUS:85127938706
VL - 7
SP - 12147
EP - 12157
JO - ACS Omega
JF - ACS Omega
SN - 2470-1343
IS - 14
ER -