Targeting hyaluronan-mediated motility receptor (HMMR) enhances response to androgen receptor signalling inhibitors in prostate cancer

Josephine A. Hinneh, Joanna L. Gillis, Chui Yan Mah, Swati Irani, Raj K. Shrestha, Natalie K. Ryan, Enomoto Atsushi, Zeyad D. Nassar, David J. Lynn, Luke A. Selth, Masashi Kato, Margaret M. Centenera, Lisa M. Butler

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

Background: Resistance to androgen receptor signalling inhibitors (ARSIs) represents a major clinical challenge in prostate cancer. We previously demonstrated that the ARSI enzalutamide inhibits only a subset of all AR-regulated genes, and hypothesise that the unaffected gene networks represent potential targets for therapeutic intervention. This study identified the hyaluronan-mediated motility receptor (HMMR) as a survival factor in prostate cancer and investigated its potential as a co-target for overcoming resistance to ARSIs. 

Methods: RNA-seq, RT-qPCR and Western Blot were used to evaluate the regulation of HMMR by AR and ARSIs. HMMR inhibition was achieved via siRNA knockdown or pharmacological inhibition using 4-methylumbelliferone (4-MU) in prostate cancer cell lines, a mouse xenograft model and patient-derived explants (PDEs). 

Results: HMMR was an AR-regulated factor that was unaffected by ARSIs. Genetic (siRNA) or pharmacological (4-MU) inhibition of HMMR significantly suppressed growth and induced apoptosis in hormone-sensitive and enzalutamide-resistant models of prostate cancer. Mechanistically, 4-MU inhibited AR nuclear translocation, AR protein expression and subsequent downstream AR signalling. 4-MU enhanced the growth-suppressive effects of 3 different ARSIs in vitro and, in combination with enzalutamide, restricted proliferation of prostate cancer cells in vivo and in PDEs. 

Conclusion: Co-targeting HMMR and AR represents an effective strategy for improving response to ARSIs.

Original languageEnglish
Pages (from-to)1350-1361
Number of pages12
JournalBritish Journal of Cancer
Volume129
Issue number8
Early online date6 Sept 2023
DOIs
Publication statusE-pub ahead of print - 6 Sept 2023

Keywords

  • Prostate cancer
  • Translational research

Fingerprint

Dive into the research topics of 'Targeting hyaluronan-mediated motility receptor (HMMR) enhances response to androgen receptor signalling inhibitors in prostate cancer'. Together they form a unique fingerprint.

Cite this