Targeting Orphan G Protein-Coupled Receptor 17 with T0 Ligand Impairs Glioblastoma Growth

Phuong Doan, Phung Nguyen, Akshaya Murugesan, Kumar Subramanian, Saravanan Konda Mani, Vignesh Kalimuthu, Bobin George Abraham, Brett W. Stringer, Kadalmani Balamuthu, Olli Yli‐harja, Meenakshisundaram Kandhavelu

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Glioblastoma, an invasive high‐grade brain cancer, exhibits numerous treatment chal-lenges. Amongst the current therapies, targeting functional receptors and active signaling pathways were found to be a potential approach for treating GBM. We exploited the role of endogenous expression of GPR17, a G protein‐coupled receptor (GPCR), with agonist GA‐T0 in the survival and treatment of GBM. RNA sequencing was performed to understand the association of GPR17 expression with LGG and GBM. RT‐PCR and immunoblotting were performed to confirm the endogenous expression of GPR17 mRNA and its encoded protein. Biological functions of GPR17 in the GBM cells was assessed by in vitro analysis. HPLC and histopathology in wild mice and an acute‐toxicity analysis in a patient‐derived xenograft model were performed to understand the clinical implica-tion of GA‐T0 targeting GPR17. We observed the upregulation of GPR17 in association with improved survival of LGG and GBM, confirming it as a predictive biomarker. GA‐T0‐stimulated GPR17 leads to the inhibition of cyclic AMP and calcium flux. GPR17 signaling activation enhances cytotoxicity against GBM cells and, in patient tissue‐derived mesenchymal subtype GBM cells, induces apoptosis and prevents proliferation by stoppage of the cell cycle at the G1 phase. Modulation of the key genes involved in DNA damage, cell cycle arrest, and in several signaling pathways, including MAPK/ERK, PI3K–Akt, STAT, and NF‐κB, prevents tumor regression. In vivo activation of GPR17 by GA‐T0 reduces the tumor volume, uncovering the potential of GA‐T0–GPR17 as a targeted therapy for GBM treatment. Conclusion: Our analysis suggests that GA‐T0 targeting the GPR17 receptor presents a novel therapy for treating glioblastoma.

Original languageEnglish
Article number3773
Number of pages22
JournalCancers
Volume13
Issue number15
DOIs
Publication statusPublished - 1 Aug 2021

Keywords

  • Blood–brain barrier
  • Cell death
  • Glioblastoma
  • GPR17‐targeted drug
  • In vivo
  • Mode of action
  • Toxicity

Fingerprint

Dive into the research topics of 'Targeting Orphan G Protein-Coupled Receptor 17 with T0 Ligand Impairs Glioblastoma Growth'. Together they form a unique fingerprint.

Cite this