TY - JOUR
T1 - Task-dependent neural control of regions within human genioglossus
AU - Yeung, Jade
AU - Burke, Peter G. R.
AU - Knapman, Fiona L.
AU - Patti, Jessica
AU - Brown, Elizabeth C.
AU - Gandevia, Simon C.
AU - Eckert, Danny J.
AU - Butler, Jane E.
AU - Bilston, Lynne E.
PY - 2022/2
Y1 - 2022/2
N2 - Anatomical and imaging evidence suggests neural control of oblique and horizontal compartments of the genioglossus differs. However, neurophysiological evidence for differential control remains elusive. This study aimed to determine whether there are differences in neural drive to the oblique and horizontal regions of the genioglossus during swallowing and tongue protrusion. Adult participants (n = 63; 48 M) were recruited from a sleep clinic; 41 had obstructive sleep apnea (OSA: 34 M, 8 F). Electromyographic (EMG) was recorded at rest (awake, supine) using four intramuscular fine-wire electrodes inserted percutaneously into the anterior oblique, posterior oblique, anterior horizontal, and posterior horizontal genioglossus. Epiglottic pressure and nasal airflow were also measured. During swallowing, two distinct EMG patterns were observed – a monophasic response (single EMG peak) and a biphasic response (2 bursts of EMG). Peak EMG and timing of the peak relative to epiglottic pressure were significantly different between patterns (linear mixed models, P < 0.001). Monophasic activation was more likely in the horizontal than oblique region during swallowing (OR = 6.83, CI = 3.46–13.53, P < 0.001). In contrast, during tongue protrusion, activation patterns and EMG magnitude were not different between regions. There were no systematic differences in EMG patterns during swallowing or tongue protrusion between OSA and non-OSA groups. These findings provide evidence for functional differences in the motoneuronal output to the oblique and horizontal compartments, enabling differential task-specific drive. Given this, it is important to identify the compartment from which EMG is acquired. We propose that the EMG patterns during swallowing may be used to identify the compartment where a recording electrode is located.NEW & NOTEWORTHY During swallowing, we observed two distinct, stereotyped muscle activation patterns that define the horizontal (monophasic, maximal EMG) and oblique (biphasic, submaximal EMG) neuromuscular compartments of genioglossus. In contrast, volitional tongue protrusions produced uniform activation across compartments. This provides evidence for task-dependent, functionally discrete neuromuscular control of the oblique and horizontal compartments of genioglossus. The magnitude and temporal patterning of genioglossus EMG during swallowing may help guide electrode placement in tongue EMG studies.
AB - Anatomical and imaging evidence suggests neural control of oblique and horizontal compartments of the genioglossus differs. However, neurophysiological evidence for differential control remains elusive. This study aimed to determine whether there are differences in neural drive to the oblique and horizontal regions of the genioglossus during swallowing and tongue protrusion. Adult participants (n = 63; 48 M) were recruited from a sleep clinic; 41 had obstructive sleep apnea (OSA: 34 M, 8 F). Electromyographic (EMG) was recorded at rest (awake, supine) using four intramuscular fine-wire electrodes inserted percutaneously into the anterior oblique, posterior oblique, anterior horizontal, and posterior horizontal genioglossus. Epiglottic pressure and nasal airflow were also measured. During swallowing, two distinct EMG patterns were observed – a monophasic response (single EMG peak) and a biphasic response (2 bursts of EMG). Peak EMG and timing of the peak relative to epiglottic pressure were significantly different between patterns (linear mixed models, P < 0.001). Monophasic activation was more likely in the horizontal than oblique region during swallowing (OR = 6.83, CI = 3.46–13.53, P < 0.001). In contrast, during tongue protrusion, activation patterns and EMG magnitude were not different between regions. There were no systematic differences in EMG patterns during swallowing or tongue protrusion between OSA and non-OSA groups. These findings provide evidence for functional differences in the motoneuronal output to the oblique and horizontal compartments, enabling differential task-specific drive. Given this, it is important to identify the compartment from which EMG is acquired. We propose that the EMG patterns during swallowing may be used to identify the compartment where a recording electrode is located.NEW & NOTEWORTHY During swallowing, we observed two distinct, stereotyped muscle activation patterns that define the horizontal (monophasic, maximal EMG) and oblique (biphasic, submaximal EMG) neuromuscular compartments of genioglossus. In contrast, volitional tongue protrusions produced uniform activation across compartments. This provides evidence for task-dependent, functionally discrete neuromuscular control of the oblique and horizontal compartments of genioglossus. The magnitude and temporal patterning of genioglossus EMG during swallowing may help guide electrode placement in tongue EMG studies.
KW - Electromyography
KW - Genioglossus
KW - Swallowing
KW - Tongue protrusion
UR - http://www.scopus.com/inward/record.url?scp=85124198207&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1058974
U2 - 10.1152/japplphysiol.00478.2021
DO - 10.1152/japplphysiol.00478.2021
M3 - Article
C2 - 34989652
AN - SCOPUS:85124198207
SN - 8750-7587
VL - 132
SP - 527
EP - 540
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 2
ER -