Temperature Dependence of Charge Separation and Recombination in Porphyrin Oligomer-Fullerene Donor-Acceptor Systems

Axel Kahnt, Joakim Karnbratt, Louisa Esdaile, Marie Hutin, Katsutoshi Sawada, Harry Anderson, Bo Albinsson

    Research output: Contribution to journalArticlepeer-review

    50 Citations (Scopus)


    Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C 60 were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C 60 followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (ii) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (λ). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C 60-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.

    Original languageEnglish
    Pages (from-to)9863-9871
    Number of pages9
    JournalJournal of The American Chemical Society
    Issue number25
    Publication statusPublished - 29 Jun 2011


    Dive into the research topics of 'Temperature Dependence of Charge Separation and Recombination in Porphyrin Oligomer-Fullerene Donor-Acceptor Systems'. Together they form a unique fingerprint.

    Cite this