TY - JOUR
T1 - The Cost Effectiveness of Genomic Medicine in Cancer Control
T2 - A Systematic Literature Review
AU - Bourke, Mackenzie
AU - McInerney-Leo, Aideen
AU - Steinberg, Julia
AU - Boughtwood, Tiffany
AU - Milch, Vivienne
AU - Ross, Anna Laura
AU - Ambrosino, Elena
AU - Dalziel, Kim
AU - Franchini, Fanny
AU - Huang, Li
AU - Peters, Riccarda
AU - Gonzalez, Francisco Santos
AU - Goranitis, Ilias
PY - 2025/5
Y1 - 2025/5
N2 - Background and Objective: Genomic medicine offers an unprecedented opportunity to improve cancer outcomes through prevention, early detection and precision therapy. Health policy makers worldwide are developing strategies to embed genomic medicine in routine cancer care. Successful translation of genomic medicine, however, remains slow. This systematic review aims to identify and synthesise published evidence on the cost effectiveness of genomic medicine in cancer control. The insights could support efforts to accelerate access to cost-effective applications of human genomics. Methods: The study protocol was registered with PROSPERO (CRD42024480842), and the review was conducted in line with Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) Guidelines. The search was run in four databases: MEDLINE, Embase, CINAHL and EconLit. Full economic evaluations of genomic technologies at any stage of cancer care, and published after 2018 and in English, were included for data extraction. Results: The review identified 137 articles that met the inclusion criteria. Most economic evaluations focused on the prevention and early detection stage (n = 44; 32%), the treatment stage (n = 36; 26%), and managing relapsed, refractory or progressive disease (n = 51, 37%). Convergent cost-effectiveness evidence was identified for the prevention and early detection of breast and ovarian cancer, and for colorectal and endometrial cancers. For cancer treatment, the use of genomic testing for guiding therapy was highly likely to be cost effective for breast and blood cancers. Studies reported that genomic medicine was cost effective for advanced and metastatic non-small cell lung cancer. There was insufficient or mixed evidence regarding the cost effectiveness of genomic medicine in the management of other cancers. Conclusions: This review mapped out the cost-effectiveness evidence of genomic medicine across the cancer care continuum. Gaps in the literature mean that potentially cost-effective uses of genomic medicine in cancer control, for example rare cancers or cancers of unknown primary, may be being overlooked. Evidence on the value of information and budget impact are critical, and advancements in methods to include distributional effects, system capacity and consumer preferences will be valuable. Expanding the current cost-effectiveness evidence base is essential to enable the sustainable and equitable translation of genomic medicine.
AB - Background and Objective: Genomic medicine offers an unprecedented opportunity to improve cancer outcomes through prevention, early detection and precision therapy. Health policy makers worldwide are developing strategies to embed genomic medicine in routine cancer care. Successful translation of genomic medicine, however, remains slow. This systematic review aims to identify and synthesise published evidence on the cost effectiveness of genomic medicine in cancer control. The insights could support efforts to accelerate access to cost-effective applications of human genomics. Methods: The study protocol was registered with PROSPERO (CRD42024480842), and the review was conducted in line with Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) Guidelines. The search was run in four databases: MEDLINE, Embase, CINAHL and EconLit. Full economic evaluations of genomic technologies at any stage of cancer care, and published after 2018 and in English, were included for data extraction. Results: The review identified 137 articles that met the inclusion criteria. Most economic evaluations focused on the prevention and early detection stage (n = 44; 32%), the treatment stage (n = 36; 26%), and managing relapsed, refractory or progressive disease (n = 51, 37%). Convergent cost-effectiveness evidence was identified for the prevention and early detection of breast and ovarian cancer, and for colorectal and endometrial cancers. For cancer treatment, the use of genomic testing for guiding therapy was highly likely to be cost effective for breast and blood cancers. Studies reported that genomic medicine was cost effective for advanced and metastatic non-small cell lung cancer. There was insufficient or mixed evidence regarding the cost effectiveness of genomic medicine in the management of other cancers. Conclusions: This review mapped out the cost-effectiveness evidence of genomic medicine across the cancer care continuum. Gaps in the literature mean that potentially cost-effective uses of genomic medicine in cancer control, for example rare cancers or cancers of unknown primary, may be being overlooked. Evidence on the value of information and budget impact are critical, and advancements in methods to include distributional effects, system capacity and consumer preferences will be valuable. Expanding the current cost-effectiveness evidence base is essential to enable the sustainable and equitable translation of genomic medicine.
KW - genomic medicine
KW - cancer care
KW - patient outcomes
KW - cost effectiveness
UR - http://www.scopus.com/inward/record.url?scp=105001733578&partnerID=8YFLogxK
U2 - 10.1007/s40258-025-00949-w
DO - 10.1007/s40258-025-00949-w
M3 - Review article
AN - SCOPUS:105001733578
SN - 1175-5652
VL - 23
SP - 359
EP - 393
JO - Applied Health Economics and Health Policy
JF - Applied Health Economics and Health Policy
IS - 3
ER -