TY - JOUR
T1 - The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection
AU - Boase, Samuel
AU - Foreman, Andrew
AU - Cleland, Edward
AU - Tan, Lor
AU - Melton-Kreft, Rachel
AU - Pant, Harshita
AU - Hu, Fen
AU - Ehrlich, Garth
AU - Wormald, Peter
PY - 2013/5/8
Y1 - 2013/5/8
N2 - Background: Bacteria and fungi are believed to influence mucosal inflammation in chronic rhinosinusitis (CRS). However their presence and relationship to disease is debated. This study used multiple detection methods to compare microbial diversity and microbial abundance in healthy and diseased sinonasal mucosa. The utility of contemporary detection methods is also examined.Methods: Sinonasal mucosa was analyzed from 38 CRS and 6 controls. Bacterial and fungal analysis was performed using conventional culture, molecular diagnostics (polymerase chain reaction coupled with electrospray ionization time-of-flight mass spectrometry) and fluorescence in situ hybridization.Results: Microbes were detected in all samples, including controls, and were often polymicrobial. 33 different bacterial species were detected in CRS, 5 in control patients, with frequent recovery of anaerobes. Staphylococcus aureus and Propionibacterium acnes were the most common organisms in CRS and controls, respectively. Using a model organism, FISH had a sensitivity of 78%, and a specificity of 93%. Many species were detected in both CRS and controls however, microbial abundance was associated with disease manifestation.Conclusions: This study highlights some cornerstones of microbial variations in healthy and diseased paranasal sinuses. Whilst the healthy sinus is clearly not sterile, it appears prevalence and abundance of organisms is critical in determining disease. Evidence from high-sensitivity techniques, limits the role of fungi in CRS to a small group of patients. Comparison with molecular analysis suggests that the detection threshold of FISH and culture is related to organism abundance and, furthermore, culture tends to select for rapidly growing organisms.
AB - Background: Bacteria and fungi are believed to influence mucosal inflammation in chronic rhinosinusitis (CRS). However their presence and relationship to disease is debated. This study used multiple detection methods to compare microbial diversity and microbial abundance in healthy and diseased sinonasal mucosa. The utility of contemporary detection methods is also examined.Methods: Sinonasal mucosa was analyzed from 38 CRS and 6 controls. Bacterial and fungal analysis was performed using conventional culture, molecular diagnostics (polymerase chain reaction coupled with electrospray ionization time-of-flight mass spectrometry) and fluorescence in situ hybridization.Results: Microbes were detected in all samples, including controls, and were often polymicrobial. 33 different bacterial species were detected in CRS, 5 in control patients, with frequent recovery of anaerobes. Staphylococcus aureus and Propionibacterium acnes were the most common organisms in CRS and controls, respectively. Using a model organism, FISH had a sensitivity of 78%, and a specificity of 93%. Many species were detected in both CRS and controls however, microbial abundance was associated with disease manifestation.Conclusions: This study highlights some cornerstones of microbial variations in healthy and diseased paranasal sinuses. Whilst the healthy sinus is clearly not sterile, it appears prevalence and abundance of organisms is critical in determining disease. Evidence from high-sensitivity techniques, limits the role of fungi in CRS to a small group of patients. Comparison with molecular analysis suggests that the detection threshold of FISH and culture is related to organism abundance and, furthermore, culture tends to select for rapidly growing organisms.
UR - http://www.scopus.com/inward/record.url?scp=84877832463&partnerID=8YFLogxK
U2 - 10.1186/1471-2334-13-210
DO - 10.1186/1471-2334-13-210
M3 - Article
SN - 1471-2334
VL - 13
SP - Article 210
JO - BMC Infectious Diseases
JF - BMC Infectious Diseases
IS - 1
M1 - 210
ER -