Abstract
The polarimetric L-band imaging synthetic aperture radar (PLIS) is a high spatial resolution (better than 6 m) airborne synthetic aperture radar system that has been dedicated to scientific research into civilian applications since 2010. The weight of PLIS is ∼38 kg, allowing it to be installed aboard small low-cost aircraft, with two antennas used to measure the full backscatter matrix for a swath between 15° and 50° on each side of the flight direction. Calibration based on a total of 96 calibration points and a homogeneous forest during the two recent soil moisture active passive experiments (SMAPEx-4 and 5) showed an overall radiometric accuracy of 0.58 dB (root-mean-square error) over trihedral passive radar calibrators. Independent evaluation based on polarimetric active radar calibrators showed an amplitude imbalance of 0.17 dB with a standard deviation of 0.15 dB and a phase imbalance of 3.87° with a standard deviation of 2.86°. Two calibrated phased-array L-Band synthetic aperture radar-2 (PALSAR-2) images with different observation modes (ScanSAR and Stripmap) were compared with the calibrated PLIS images. The agreement between PALSAR-2 Stripmap and PLIS had a root mean square difference of 1.27 dB and a correlation coefficient of 0.87. Further comparisons over different landcover types confirmed that homogeneous forest and grassland areas constitute optimal targets for cross-validation and/or calibration.
Original language | English |
---|---|
Pages (from-to) | 4513-4525 |
Number of pages | 13 |
Journal | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Volume | 11 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2018 |
Keywords
- Calibration and validation
- cross-calibration
- phased-array L-Band synthetic aperture radar-2 (PALSAR-2)
- polarimetric L-band imaging SAR (PLIS)
- synthetic aperture radar (SAR)