TY - JOUR
T1 - The relationship between frontal alpha asymmetry and behavioral and brain activity indices of reactive inhibitory control
AU - Akil, Atakan M
AU - Cserjési, Renáta
AU - Nagy, Tamás
AU - Demetrovics, Zsolt
AU - Németh, Dezső
AU - Logemann, H N Alexander
PY - 2024/8
Y1 - 2024/8
N2 - ABSTRACT: Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (Mage ¼ 23.93, SDage ¼ 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity. NEW & NOTEWORTHY: This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.
AB - ABSTRACT: Reactive inhibitory control plays an important role in phenotype of different diseases/different phases of a disease. One candidate electrophysiological marker of inhibitory control is frontal alpha asymmetry (FAA). FAA reflects the relative difference in contralateral frontal brain activity. However, the relationship between FAA and potential behavioral/brain activity indices of reactive inhibitory control is not yet clear. We assessed the relationship between resting-state FAA and indicators of reactive inhibitory control. Additionally, we investigated the effect of modulation of FAA via transcranial direct current stimulation (tDCS). We implemented a randomized sham-controlled design with 65 healthy humans (Mage ¼ 23.93, SDage ¼ 6.08; 46 female). Before and after 2-mA anodal tDCS of the right frontal site (with the cathode at the contralateral site) for 20 min, we collected EEG data and reactive inhibitory performance in neutral and food-reward conditions, using the stop signal task (SST). There was no support for the effect of tDCS on FAA or any indices of reactive inhibitory control. Our correlation analysis revealed an association between inhibitory brain activity in the food-reward condition and (pre-tDCS) asymmetry. Higher right relative to left frontal brain activity was correlated with reduced early-onset inhibitory activity and, in contrast, linked with higher late-onset inhibitory control in the food-reward condition. Similarly, event-related potential analyses showed reduced early-onset and enhanced late-onset inhibitory brain activity over time, particularly in the food-reward condition. These results suggest that there can be a dissociation regarding the lateralization of frontal brain activity and early- and late-onset inhibitory brain activity. NEW & NOTEWORTHY: This research reveals dissociation between baseline frontal alpha asymmetry and the timing of reactive inhibitory brain activities in food-reward contexts. Whereas inhibitory control performance decreases over time in a stop signal task, electrophysiological indices show reduced early- and heightened late-onset inhibitory brain activity, especially in the reward condition. Additionally, greater right frontal activity correlates with reduced early-onset and increased late-onset inhibitory brain activity.
KW - event-related potentials
KW - frontal alpha asymmetry
KW - reactive inhibitory control
KW - stop signal task
KW - transcranial direct current stimulation
UR - http://www.scopus.com/inward/record.url?scp=85200277164&partnerID=8YFLogxK
U2 - 10.1152/jn.00046.2024
DO - 10.1152/jn.00046.2024
M3 - Article
C2 - 38863426
AN - SCOPUS:85200277164
SN - 0022-3077
VL - 132
SP - 362
EP - 374
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 2
ER -