The zinc efflux activator SczA protects Streptococcus pneumoniae serotype 2 D39 from intracellular zinc toxicity

Julia E. Martin, Katherine A. Edmonds, Kevin E. Bruce, Gregory C. Campanello, Bart A. Eijkelkamp, Erin B. Brazel, Christopher A. McDevitt, Malcolm E. Winkler, David P. Giedroc

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


Zinc is an essential trace element that serves as a catalytic cofactor in metalloenzymes and a structural element in proteins involved in general metabolism and cellular defenses of pathogenic bacteria. Despite its importance, high zinc levels can impair cellular processes, inhibiting growth of many pathogenic bacteria, including the major respiratory pathogen Streptococcus pneumoniae. Zinc intoxication is prevented in S. pneumoniae by expression of the zinc exporter CzcD, whose expression is activated by the novel TetR-family transcriptional zinc-sensing regulator SczA. How zinc bioavailability triggers activation of SczA is unknown. It is shown here through functional studies in S. pneumoniae that an unannotated homodimeric TetR from S. agalactiae (PDB 3KKC) is the bona fide zinc efflux regulator SczA, and binds two zinc ions per protomer. Mutagenesis analysis reveals two metal binding sites, termed A and B, located on opposite sides of the SczA C-terminal regulatory domain. In vivo, the A- and B-site SczA mutant variants impact S. pneumoniae resistance to zinc toxicity and survival in infected macrophages. A model is proposed for S. pneumoniae SczA function in which both A- and B-sites were required for transcriptional activation of czcD expression, with the A-site serving as the evolutionarily conserved intracellular sensing site in SczAs.

Original languageEnglish
Pages (from-to)636-651
Number of pages16
Issue number4
Early online date1 Mar 2017
Publication statusPublished - May 2017
Externally publishedYes


  • zinc
  • trace elements
  • catalytic cofactor


Dive into the research topics of 'The zinc efflux activator SczA protects Streptococcus pneumoniae serotype 2 D39 from intracellular zinc toxicity'. Together they form a unique fingerprint.

Cite this