TY - JOUR
T1 - Towards a Clinical Decision-Making Algorithm Guiding Locomotor Therapy Modality in Subacute Stroke
T2 - An Exploratory Study
AU - Prideaux, Nicole
AU - Barr, Christopher
AU - Drummond, Claire
AU - van den Berg, Maayken
PY - 2021/12
Y1 - 2021/12
N2 - Objectives: To propose a clinical decision-making algorithm guiding modality choice and transition from the Lokomat® robotic to body-weight supported treadmill training in subacute stroke, due to current evidence being limited, making clinical decisions difficult. Materials and Methods: For 10 adult patients with subacute stroke completing Lokomat® therapy, physiotherapist clinical judgement regarding body-weight supported treadmill training readiness and the following objective measurements were collected; Functional Ambulation Category; sit to stand/standing ability; Lokomat® settings; maximal active hip and knee flexion in standing; and gait biomechanics during body-weight supported treadmill training. Based on observed patterns a proposed clinical decision-making algorithm was developed. Results: Clinical judgement deemed four of 10 participants ready to transition to body-weight supported treadmill training. Unlike participants judged not ready, these participants had: a) a Functional Ambulation Category of 1; b) independence with sit to stand and standing with even weight bearing; c) Lokomat®: Body-Weight Support <30%, Guidance Force <30-35%, speed >2.0kph; d) >45° standing active hip and knee flexion; e) no significant issues with physiological stepping in treadmill training or only requiring assistance from one therapist to achieve this. Conclusion: Participants judged ready for transition from the Lokomat® to body-weight supported treadmill training presented with increased independent functional ability, more challenging Lokomat® settings, greater active volitional lower-limb control, and less issues with physiological stepping in treadmill training, than those participants judged not ready. Results were translated into a proposed clinical decision-making algorithm guiding transition from the Lokomat® to body-weight supported treadmill training, to be further tested in clinical trials.
AB - Objectives: To propose a clinical decision-making algorithm guiding modality choice and transition from the Lokomat® robotic to body-weight supported treadmill training in subacute stroke, due to current evidence being limited, making clinical decisions difficult. Materials and Methods: For 10 adult patients with subacute stroke completing Lokomat® therapy, physiotherapist clinical judgement regarding body-weight supported treadmill training readiness and the following objective measurements were collected; Functional Ambulation Category; sit to stand/standing ability; Lokomat® settings; maximal active hip and knee flexion in standing; and gait biomechanics during body-weight supported treadmill training. Based on observed patterns a proposed clinical decision-making algorithm was developed. Results: Clinical judgement deemed four of 10 participants ready to transition to body-weight supported treadmill training. Unlike participants judged not ready, these participants had: a) a Functional Ambulation Category of 1; b) independence with sit to stand and standing with even weight bearing; c) Lokomat®: Body-Weight Support <30%, Guidance Force <30-35%, speed >2.0kph; d) >45° standing active hip and knee flexion; e) no significant issues with physiological stepping in treadmill training or only requiring assistance from one therapist to achieve this. Conclusion: Participants judged ready for transition from the Lokomat® to body-weight supported treadmill training presented with increased independent functional ability, more challenging Lokomat® settings, greater active volitional lower-limb control, and less issues with physiological stepping in treadmill training, than those participants judged not ready. Results were translated into a proposed clinical decision-making algorithm guiding transition from the Lokomat® to body-weight supported treadmill training, to be further tested in clinical trials.
KW - Algorithm
KW - Body-weight support treadmill
KW - Clinical decision-making
KW - Lokomat®
KW - Robotics
KW - Stroke
KW - Subacute
KW - Transition
UR - http://www.scopus.com/inward/record.url?scp=85115961195&partnerID=8YFLogxK
U2 - 10.1016/j.jstrokecerebrovasdis.2021.106112
DO - 10.1016/j.jstrokecerebrovasdis.2021.106112
M3 - Article
AN - SCOPUS:85115961195
SN - 1052-3057
VL - 30
JO - Journal of Stroke and Cerebrovascular Diseases
JF - Journal of Stroke and Cerebrovascular Diseases
IS - 12
M1 - 106112
ER -