TY - JOUR
T1 - Transcutaneous vagus nerve stimulation (tVNS) Enhances response selection during sequential action
AU - Jongkees, Bryant J.
AU - Immink, Maarten A.
AU - Finisguerra, Alessandra
AU - Colzato, Lorenza S.
PY - 2018/7/6
Y1 - 2018/7/6
N2 - Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive and safe technique that transiently enhances brain GABA and noradrenaline levels. Although tVNS has been used mainly to treat clinical disorders such as epilepsy, recent studies indicate it is also an effective tool to investigate and potentially enhance the neuromodulation of action control. Given the key roles of GABA and noradrenaline in neural plasticity and cortical excitability, we investigated whether tVNS, through a presumed increase in level of these neurotransmitters, modulates sequential behavior in terms of response selection and sequence learning components. To this end we assessed the effect of single-session tVNS in healthy young adults (N = 40) on performance on a serial reaction time task, using a single-blind, sham-controlled between-subject design. Active as compared to sham tVNS did not differ in terms of acquisition of an embedded response sequence and in terms of performance under randomized response schedules. However, active tVNS did enhance response selection processes. Specifically, the group receiving active tVNS did not exhibit inhibition of return during response reversals (i.e., when trial N requires the same response as trial N-2, e.g., 1-2-1) on trials with an embedded response sequence. This finding indicates that tVNS enhances response selection processes when selection demands are particularly high. More generally, these results add to converging evidence that tVNS enhances action control performance.
AB - Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive and safe technique that transiently enhances brain GABA and noradrenaline levels. Although tVNS has been used mainly to treat clinical disorders such as epilepsy, recent studies indicate it is also an effective tool to investigate and potentially enhance the neuromodulation of action control. Given the key roles of GABA and noradrenaline in neural plasticity and cortical excitability, we investigated whether tVNS, through a presumed increase in level of these neurotransmitters, modulates sequential behavior in terms of response selection and sequence learning components. To this end we assessed the effect of single-session tVNS in healthy young adults (N = 40) on performance on a serial reaction time task, using a single-blind, sham-controlled between-subject design. Active as compared to sham tVNS did not differ in terms of acquisition of an embedded response sequence and in terms of performance under randomized response schedules. However, active tVNS did enhance response selection processes. Specifically, the group receiving active tVNS did not exhibit inhibition of return during response reversals (i.e., when trial N requires the same response as trial N-2, e.g., 1-2-1) on trials with an embedded response sequence. This finding indicates that tVNS enhances response selection processes when selection demands are particularly high. More generally, these results add to converging evidence that tVNS enhances action control performance.
KW - Cognitive enhancement
KW - GABA
KW - Implicit motor sequence learning
KW - Response selection
KW - TVNS
UR - http://www.scopus.com/inward/record.url?scp=85049651988&partnerID=8YFLogxK
U2 - 10.3389/fpsyg.2018.01159
DO - 10.3389/fpsyg.2018.01159
M3 - Article
AN - SCOPUS:85049651988
SN - 1664-1078
VL - 9
JO - Frontiers in Psychology
JF - Frontiers in Psychology
M1 - 1159
ER -