Two-dimensional laser induced fluorescence spectroscopy of van der Waals complexes: Fluorobenzene-Arn (n = 1,2)

Jason Gascooke, Ula Alexander, Warren Lawrance

    Research output: Contribution to journalArticle

    11 Citations (Scopus)

    Abstract

    The technique of two-dimensional laser induced fluorescence (2D-LIF) spectroscopy has been used to observe the van der Waals complexes fluorobenzene-Ar and fluorobenzene-Ar 2 in the region of their S 1-S 0 electronic origins. The 2D-LIF spectral images reveal a number of features assigned to the van der Waals vibrations in S 0 and S 1. An advantage of 2D-LIF spectroscopy is that the LIF spectrum associated with a particular species may be extracted from an image. This is illustrated for fluorobenzene-Ar. The S 1 van der Waals modes observed in this spectrum are consistent with previous observations using mass resolved resonance enhanced multiphoton ionisation techniques. For S 0, the two bending modes previously observed using a Raman technique were observed along with three new levels. These agree exceptionally well with ab initio calculations. The Fermi resonance between the stretch and bend overtone has been analysed in both the S 0 and S 1 states, revealing that the coupling is stronger in S 0 than in S 1. For fluorobenzene-Ar 2 the 2D-LIF spectral image reveals the S 0 symmetric stretch van der Waals vibration to be 35.0 cm -1, closely matching the value predicted based on the fluorobenzene-Ar van der Waals stretch frequency. Rotational band contour analysis has been performed on the fluorobenzene-Ar 000 transition to yield a set of S 1 rotational constants A 0.05871 ± 0.00014 cm -1, B 0.03803 ± 0.00010 cm -1, and C 0.03103 ± 0.00003 cm -1. The rotational constants imply that in the S 1 0 0 level the Ar is on average 3.488 Å from the fluorobenzene centre of mass and displaced from it towards the centre of the ring at an angle of ∼6° to the normal. The rotational contour for fluorobenzene-Ar 2 was predicted using rotational constants calculated on the basis of the fluorobenzene-Ar geometry and compared with the experimental contour. The comparison is poor which, while due in part to expected saturation effects, suggests the presence of another band lying beneath the contour.

    Original languageEnglish
    Article number134309
    Pages (from-to)134309-1-134309-15
    Number of pages15
    JournalJournal of Chemical Physics
    Volume136
    Issue number13
    DOIs
    Publication statusPublished - 7 Apr 2012

    Fingerprint Dive into the research topics of 'Two-dimensional laser induced fluorescence spectroscopy of van der Waals complexes: Fluorobenzene-Arn (n = 1,2)'. Together they form a unique fingerprint.

  • Cite this