Uncertainty of CERES-Maize Calibration under Different Irrigation Strategies Using PEST Optimization Algorithm

Quanxiao Fang, L. Ma, R. D. Harmel, Q. Yu, M. W. Sima, P. N.S. Bartling, R. W. Malone, B. T. Nolan, J. Doherty

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

An important but rarely studied aspect of crop modeling is the uncertainty associated with model calibration and its effect on model prediction. Biomass and grain yield data from a four-year maize experiment (2008–2011) with six irrigation treatments were divided into subsets by either treatments (Calibration-by-Treatment) or years (Calibration-by-Year). These subsets were then used to calibrate crop cultivar parameters in CERES (Crop Environment Resource Synthesis)-Maize implemented within RZWQM2 (Root Zone Water Quality Model 2) using the automatic Parameter ESTimation (PEST) algorithm to explore model calibration uncertainties. After calibration for each subset, PEST also generated 300 cultivar parameter sets by assuming a normal distribution of each parameter within their reported values in the literature, using the Latin hypercube sampling (LHS) method. The parameter sets that produced similar goodness of fit (11–164 depending on subset used for calibration) were then used to predict all the treatments and years of the entire dataset. Our results showed that the selection of calibration datasets greatly affected the calibrated crop parameters and their uncertainty, as well as prediction uncertainty of grain yield and biomass. The high variability in model prediction of grain yield and biomass among the six (Calibration-by-Treatment) or the four (Calibration-by-Year) scenarios indicated that parameter uncertainty should be considered in calibrating CERES-Maize with grain yield and biomass data from different irrigation treatments, and model predictions should be provided with confidence intervals.

Original languageEnglish
Article number241
Number of pages17
JournalAgronomy
Volume9
Issue number5
DOIs
Publication statusPublished - May 2019
Externally publishedYes

Keywords

  • CERES-Maize
  • Crop cultivar parameters
  • Irrigation treatment
  • Model uncertainty
  • PEST

Fingerprint

Dive into the research topics of 'Uncertainty of CERES-Maize Calibration under Different Irrigation Strategies Using PEST Optimization Algorithm'. Together they form a unique fingerprint.

Cite this