TY - JOUR
T1 - Upper esophageal sphincter impedance as a marker of sphincter opening diameter
AU - Omari, Taher
AU - Ferris, Lara
AU - Dejaeger, Eddy
AU - Tack, Jan
AU - Vanbeckevoort, Dirk
AU - Rommel, Nathalie
PY - 2012/5/1
Y1 - 2012/5/1
N2 - The measurement of the physical extent of opening of the upper esophageal sphincter (UES) during bolus swallowing has to date relied on videofluoroscopy. Theoretically luminal impedance measured during bolus flow should be influenced by luminal diameter. In this study, we measured the UES nadir impedance (lowest value of impedance) during bolus swallowing and assessed it as a potential correlate of UES diameter that can be determined nonradiologically. In 40 patients with dysphagia, bolus swallowing of liquids, semisolids, and solids was recorded with manometry, impedance, and videofluoroscopy. During swallows, the UES opening diameter (in the lateral fluoroscopic view) was measured and compared with automated impedance manometry (AIM)-derived swallow function variables and UES nadir impedance as well as high-resolution manometry-derived UES relaxation pressure variables. Of all measured variables, UES nadir impedance was the most strongly correlated with UES opening diameter. Narrower diameter correlated with higher impedance (r = -0.478, P < 0.001). Patients with <10 mm, 10-14 mm (normal), and ≥15 mm UES diameter had average UES nadir impedances of 498 ± 39 Ohms, 369 ± 31 Ohms, and 293 ± 17 Ohms, respectively (ANOVA P = 0.005). A higher swallow risk index, indicative of poor pharyngeal swallow function, was associated with narrower UES diameter and higher UES nadir impedance during swallowing. In contrast, UES relaxation pressure variables were not significantly altered in relation to UES diameter. We concluded that the UES nadir impedance correlates with opening diameter of the UES during bolus flow. This variable, when combined with other pharyngeal AIM analysis variables, may allow characterization of the pathophysiology of swallowing dysfunction.
AB - The measurement of the physical extent of opening of the upper esophageal sphincter (UES) during bolus swallowing has to date relied on videofluoroscopy. Theoretically luminal impedance measured during bolus flow should be influenced by luminal diameter. In this study, we measured the UES nadir impedance (lowest value of impedance) during bolus swallowing and assessed it as a potential correlate of UES diameter that can be determined nonradiologically. In 40 patients with dysphagia, bolus swallowing of liquids, semisolids, and solids was recorded with manometry, impedance, and videofluoroscopy. During swallows, the UES opening diameter (in the lateral fluoroscopic view) was measured and compared with automated impedance manometry (AIM)-derived swallow function variables and UES nadir impedance as well as high-resolution manometry-derived UES relaxation pressure variables. Of all measured variables, UES nadir impedance was the most strongly correlated with UES opening diameter. Narrower diameter correlated with higher impedance (r = -0.478, P < 0.001). Patients with <10 mm, 10-14 mm (normal), and ≥15 mm UES diameter had average UES nadir impedances of 498 ± 39 Ohms, 369 ± 31 Ohms, and 293 ± 17 Ohms, respectively (ANOVA P = 0.005). A higher swallow risk index, indicative of poor pharyngeal swallow function, was associated with narrower UES diameter and higher UES nadir impedance during swallowing. In contrast, UES relaxation pressure variables were not significantly altered in relation to UES diameter. We concluded that the UES nadir impedance correlates with opening diameter of the UES during bolus flow. This variable, when combined with other pharyngeal AIM analysis variables, may allow characterization of the pathophysiology of swallowing dysfunction.
KW - Deglutition disorders
KW - Diagnosis
KW - Electric impedance
KW - Manometry
KW - Radiology
UR - http://www.scopus.com/inward/record.url?scp=84860534812&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00473.2011
DO - 10.1152/ajpgi.00473.2011
M3 - Article
SN - 0193-1857
VL - 302
SP - G909-G913
JO - American Journal of Physiology: Gastrointestinal and Liver Physiology
JF - American Journal of Physiology: Gastrointestinal and Liver Physiology
IS - 9
ER -