Upper mantle electrical resistivity structure beneath the central Mariana subduction system

Tetsuo Matsuno, Nobukazu Seama, R Evans, Alan Chave, Kiyoshi Baba, Antony White, Tada-nori Goto, Graham Heinson, Goran Boren, Asami Yoneda, Hisashi Utada

    Research output: Contribution to journalArticlepeer-review

    68 Citations (Scopus)

    Abstract

    This paper reports on a magnetotelluric (MT) survey across the central Mariana subduction system, providing a comprehensive electrical resistivity image of the upper mantle to address issues of mantle dynamics in the mantle wedge and beneath the slow back-arc spreading ridge. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures were generated using an inversion algorithm with a smoothness constraint and with additional restrictions imposed by the subducting slab. The resultant isotropic electrical resistivity structure contains several key features. There is an uppermost resistive layer with a thickness of up to 150 km beneath the Pacific Ocean Basin, 80-100 km beneath the Mariana Trough, and 60 km beneath the Parece Vela Basin along with a conductive mantle beneath the resistive layer. A resistive region down to 60 km depth and a conductive region at greater depth are inferred beneath the volcanic arc in the mantle wedge. There is no evidence for a conductive feature beneath the back-arc spreading center. Sensitivity tests were applied to these features through inversion of synthetic data. The uppermost resistive layer is the cool, dry residual from the plate accretion process. Its thickness beneath the Pacific Ocean Basin is controlled mainly by temperature, whereas the roughly constant thickness beneath the Mariana Trough and beneath the Parece Vela Basin regardless of seafloor age is controlled by composition. The conductive mantle beneath the uppermost resistive layer requires hydration of olivine and/or melting of the mantle. The resistive region beneath the volcanic arc down to 60 km suggests that fluids such as melt or free water are not well connected or are highly three-dimensional and of limited size. In contrast, the conductive region beneath the volcanic arc below 60 km depth reflects melting and hydration driven by water release from the subducting slab. The resistive region beneath the back-arc spreading center can be explained by dry mantle with typical temperatures, suggesting that any melt present is either poorly connected or distributed discontinuously along the strike of the ridge. Evidence for electrical anisotropy in the central Mariana upper mantle is weak.

    Original languageEnglish
    Article numberQ09003
    Number of pages24
    JournalGeochemistry Geophysics Geosystems
    Volume11
    Issue number9
    DOIs
    Publication statusPublished - 1 Sept 2010

    Keywords

    • back-arc spreading system
    • electrical resistivity structure
    • Mariana
    • marine magnetotellurics
    • subduction zone
    • upper mantle structure

    Fingerprint

    Dive into the research topics of 'Upper mantle electrical resistivity structure beneath the central Mariana subduction system'. Together they form a unique fingerprint.

    Cite this