TY - JOUR
T1 - Use of smartphone sensor data in detecting and predicting depression and anxiety in young people (12–25 years)
T2 - A scoping review
AU - Beames, Joanne R.
AU - Han, Jin
AU - Shvetcov, Artur
AU - Zheng, Wu Yi
AU - Slade, Aimy
AU - Dabash, Omar
AU - Rosenberg, Jodie
AU - O'Dea, Bridianne
AU - Kasturi, Suranga
AU - Hoon, Leonard
AU - Whitton, Alexis E.
AU - Christensen, Helen
AU - Newby, Jill M.
PY - 2024/8/15
Y1 - 2024/8/15
N2 - Digital phenotyping is a promising method for advancing scalable detection and prediction methods in mental health research and practice. However, little is known about how digital phenotyping data are used to make inferences about youth mental health. We conducted a scoping review of 35 studies to better understand how passive sensing (e.g., Global Positioning System, microphone etc) and electronic usage data (e.g., social media use, device activity etc) collected via smartphones are used in detecting and predicting depression and/or anxiety in young people between 12 and 25 years-of-age. GPS and/or Wifi association logs and accelerometers were the most used sensors, although a wide variety of low-level features were extracted and computed (e.g., transition frequency, time spent in specific locations, uniformity of movement). Mobility and sociability patterns were explored in more studies compared to other behaviours such as sleep, phone use, and circadian movement. Studies used machine learning, statistical regression, and correlation analyses to examine relationships between variables. Results were mixed, but machine learning indicated that models using feature combinations (e.g., mobility, sociability, and sleep features) were better able to predict and detect symptoms of youth anxiety and/or depression when compared to models using single features (e.g., transition frequency). There was inconsistent reporting of age, gender, attrition, and phone characteristics (e.g., operating system, models), and all studies were assessed to have moderate to high risk of bias. To increase translation potential for clinical practice, we recommend the development of a standardised reporting framework to improve transparency and replicability of methodology.
AB - Digital phenotyping is a promising method for advancing scalable detection and prediction methods in mental health research and practice. However, little is known about how digital phenotyping data are used to make inferences about youth mental health. We conducted a scoping review of 35 studies to better understand how passive sensing (e.g., Global Positioning System, microphone etc) and electronic usage data (e.g., social media use, device activity etc) collected via smartphones are used in detecting and predicting depression and/or anxiety in young people between 12 and 25 years-of-age. GPS and/or Wifi association logs and accelerometers were the most used sensors, although a wide variety of low-level features were extracted and computed (e.g., transition frequency, time spent in specific locations, uniformity of movement). Mobility and sociability patterns were explored in more studies compared to other behaviours such as sleep, phone use, and circadian movement. Studies used machine learning, statistical regression, and correlation analyses to examine relationships between variables. Results were mixed, but machine learning indicated that models using feature combinations (e.g., mobility, sociability, and sleep features) were better able to predict and detect symptoms of youth anxiety and/or depression when compared to models using single features (e.g., transition frequency). There was inconsistent reporting of age, gender, attrition, and phone characteristics (e.g., operating system, models), and all studies were assessed to have moderate to high risk of bias. To increase translation potential for clinical practice, we recommend the development of a standardised reporting framework to improve transparency and replicability of methodology.
KW - Anxiety
KW - Depression
KW - Machine learning
KW - Phone
KW - Sensing
KW - Youth
UR - http://www.scopus.com/inward/record.url?scp=85200120976&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2024.e35472
DO - 10.1016/j.heliyon.2024.e35472
M3 - Review article
AN - SCOPUS:85200120976
SN - 2405-8440
VL - 10
JO - Heliyon
JF - Heliyon
IS - 15
M1 - e35472
ER -