Abstract
Students often find learning about uncertainties dry and boring. In order to engage students and simulate their interest, I have been using LEGO race cars to teach measurement more fun while allowing them to quickly repeat their experiments. Students can then perform uncertainty propagation calculations. My research found that these hands-on LEGO activities were instrumental in improving students’ confidence with physics experiments, especially in dealing with uncertainties. LEGO lab was also a key factor in reducing the early attrition rate at the first-year level.
The Experimental Activities that I have designed cover a range of topics, including the concept of uncertainty, the number of variables in an experiment, and the fairness of an experiment (i.e., whether the experiment, as designed, biased the result). In each of the experimental tasks fundamental concepts are introduced, including the various formulae for speed, velocity and acceleration, potential and kinetic energy, as well as the calculation of the track angles. Further, uncertainty analysis is introduced and explained for each experiment, with the students being required to identify the sources of the uncertainty (and if it can be determined, the magnitude) and for the quantifiable sources, and then propagate that uncertainty into the final result. For each experiment, the students are asked to discuss the limitations and drawbacks of the experiment and suggest improvements.
In this workshop, I will discuss some LEGO experimental activities that can be used in lab classes, helping students comprehend the quite abstract concept of uncertainty. These activities can be modified and used to teach school students about energy conservation, sources of energy, different types of energy etc.
The Experimental Activities that I have designed cover a range of topics, including the concept of uncertainty, the number of variables in an experiment, and the fairness of an experiment (i.e., whether the experiment, as designed, biased the result). In each of the experimental tasks fundamental concepts are introduced, including the various formulae for speed, velocity and acceleration, potential and kinetic energy, as well as the calculation of the track angles. Further, uncertainty analysis is introduced and explained for each experiment, with the students being required to identify the sources of the uncertainty (and if it can be determined, the magnitude) and for the quantifiable sources, and then propagate that uncertainty into the final result. For each experiment, the students are asked to discuss the limitations and drawbacks of the experiment and suggest improvements.
In this workshop, I will discuss some LEGO experimental activities that can be used in lab classes, helping students comprehend the quite abstract concept of uncertainty. These activities can be modified and used to teach school students about energy conservation, sources of energy, different types of energy etc.
Original language | English |
---|---|
Pages | 43 |
Number of pages | 1 |
Publication status | Published - Dec 2022 |
Event | IUPAP International Conference on Physics Education 2022 - Duration: 5 Dec 2022 → 9 Dec 2022 https://icpe2022physicseducation.com/ |
Conference
Conference | IUPAP International Conference on Physics Education 2022 |
---|---|
Abbreviated title | ICPE 2022 |
Period | 5/12/22 → 9/12/22 |
Internet address |
Keywords
- experiments
- uncertainty propagation calculations
- uncertainty
- physics experiments
- LEGO experimental activities