Using tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater-surface water-vegetation interactions

O Schilling, John Doherty, Wolfgang Kinzelbach, H Wang, P Yang, Philip Brunner

    Research output: Contribution to journalArticlepeer-review

    59 Citations (Scopus)

    Abstract

    The interactions between surface water, the vadose zone, groundwater, and vegetation are governed by complex feedback mechanisms. Numerical models simulating these interactions are essential in quantifying these processes. However, the notorious lack of field observations results in highly uncertain parameterizations. We suggest a new type of observation data to be included in the calibration data set for hydrological models simulating interactions with vegetation: Tree rings as a proxy for transpiration. We use the lower Tarim River as an example site for our approach. In order to forestall the loss of riparian ecosystems from reduced flow over a 300. km reach of the lower Tarim River, the Chinese government initiated periodical, ecological water releases. The water exchange processes in this region were simulated for a cross-section on the lower reaches of the Tarim River using a numerical model (Hydro-GeoSphere) calibrated against observations of water tables, as well as transpiration estimated from tree ring growth. A predictive uncertainty analysis quantifying the worth of different components of the observation dataset in reducing the uncertainty of model predictions was carried out. The flow of information from elements of the calibration dataset to the different parameters employed by the model was also evaluated. The flow of information and the uncertainty analysis demonstrate that tree ring records can significantly improve confidence in modeling ecosystem dynamics, even if these transpiration estimates are uncertain. To use the full potential of the historical information encapsulated in the Tarim River tree rings, however, the relationship between tree ring growth and transpiration rates has to be studied further.

    Original languageEnglish
    Pages (from-to)2258-2271
    Number of pages14
    JournalJournal of Hydrology
    Volume519
    Issue numberPart B
    DOIs
    Publication statusPublished - Nov 2014

    Keywords

    • Ecohydrology
    • Model predictive uncertainty
    • Surface water groundwater interaction
    • Transpiration
    • Tree ring growth
    • Vadose zone

    Fingerprint

    Dive into the research topics of 'Using tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater-surface water-vegetation interactions'. Together they form a unique fingerprint.

    Cite this