TY - JOUR
T1 - Validation of Predictive Score of 30-Day Hospital Readmission or Death in Patients With Heart Failure
AU - Huynh, Quan
AU - Negishi, Kazuaki
AU - De Pasquale, Carmine G.
AU - Hare, James L.
AU - Leung, Dominic
AU - Stanton, Tony
AU - Marwick, Thomas H.
PY - 2018/2/1
Y1 - 2018/2/1
N2 - Existing prediction algorithms for the identification of patients with heart failure (HF) at high risk of readmission or death after hospital discharge are only modestly effective. We sought to validate a recently developed predictive model of 30-day readmission or death in HF using an Australia-wide sample of patients. This study used data from 1,046 patients with HF at teaching hospitals in 5 Australian capital cities to validate a predictive model of 30-day readmission or death in HF. Besides standard clinical and administrative data, we collected data on individual sociodemographic and socioeconomic status, mental health (Patient Health Questionnaire [PHQ]-9 and Generalized Anxiety Disorder [GAD]-7 scale score), cognitive function (Montreal Cognitive Assessment [MoCA] score), and 2-dimensional echocardiograms. The original sample used to develop the predictive model and the validation sample had similar proportions of patients with an adverse event within 30 days (30% vs 29%, p = 0.35) and 90 days (52% vs 49%, p = 0.36). Applying the predicted risk score to the validation sample provided very good discriminatory power (C-statistic = 0.77) in the prediction of 30-day readmission or death. This discrimination was greater for predicting 30-day death (C-statistic = 0.85) than for predicting 30-day readmission (C-statistic = 0.73). There was a small difference in the performance of the predictive model among patients with either a left ventricular ejection fraction of <40% or a left ventricular ejection fraction of ≥40%, but an attenuation in discrimination when used to predict longer-term adverse outcomes. In conclusion, our findings confirm the generalizability of the predictive model that may be a powerful tool for targeting high-risk patients with HF for intensive management.
AB - Existing prediction algorithms for the identification of patients with heart failure (HF) at high risk of readmission or death after hospital discharge are only modestly effective. We sought to validate a recently developed predictive model of 30-day readmission or death in HF using an Australia-wide sample of patients. This study used data from 1,046 patients with HF at teaching hospitals in 5 Australian capital cities to validate a predictive model of 30-day readmission or death in HF. Besides standard clinical and administrative data, we collected data on individual sociodemographic and socioeconomic status, mental health (Patient Health Questionnaire [PHQ]-9 and Generalized Anxiety Disorder [GAD]-7 scale score), cognitive function (Montreal Cognitive Assessment [MoCA] score), and 2-dimensional echocardiograms. The original sample used to develop the predictive model and the validation sample had similar proportions of patients with an adverse event within 30 days (30% vs 29%, p = 0.35) and 90 days (52% vs 49%, p = 0.36). Applying the predicted risk score to the validation sample provided very good discriminatory power (C-statistic = 0.77) in the prediction of 30-day readmission or death. This discrimination was greater for predicting 30-day death (C-statistic = 0.85) than for predicting 30-day readmission (C-statistic = 0.73). There was a small difference in the performance of the predictive model among patients with either a left ventricular ejection fraction of <40% or a left ventricular ejection fraction of ≥40%, but an attenuation in discrimination when used to predict longer-term adverse outcomes. In conclusion, our findings confirm the generalizability of the predictive model that may be a powerful tool for targeting high-risk patients with HF for intensive management.
KW - Predictive Score
KW - Heart Failure
KW - high risk
KW - 30-Day readmission or death
UR - http://www.scopus.com/inward/record.url?scp=85039074142&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1058738
U2 - 10.1016/j.amjcard.2017.10.031
DO - 10.1016/j.amjcard.2017.10.031
M3 - Article
C2 - 29248155
AN - SCOPUS:85039074142
SN - 0002-9149
VL - 121
SP - 322
EP - 329
JO - American Journal of Cardiology
JF - American Journal of Cardiology
IS - 3
ER -