TY - JOUR
T1 - Vancomycin tolerance of adherent Staphylococcus aureus is impeded by nanospike-induced physiological changes
AU - Hayles, Andrew
AU - Bright, Richard
AU - Nguyen, Ngoc Huu
AU - Truong, Vi Khanh
AU - Wood, Jonathan
AU - Palms, Dennis
AU - Vongsvivut, Jitraporn
AU - Barker, Dan
AU - Vasilev, Krasimir
PY - 2023/11/29
Y1 - 2023/11/29
N2 - Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of S. aureus adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders S. aureus more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures.
AB - Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of S. aureus adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders S. aureus more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures.
KW - Microbiology
KW - Biomaterials
KW - Antibiotic tolerance
UR - http://www.scopus.com/inward/record.url?scp=85178201979&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/NHMRC/1194466
UR - http://purl.org/au-research/grants/ARC/DP180101254
U2 - 10.1038/s41522-023-00458-5
DO - 10.1038/s41522-023-00458-5
M3 - Article
C2 - 38030708
AN - SCOPUS:85178201979
SN - 2055-5008
VL - 9
JO - npj Biofilms and Microbiomes
JF - npj Biofilms and Microbiomes
IS - 1
M1 - 90
ER -