Variation in stem xylem traits is related to differentiation of upper limits of tree species along an elevational gradient

Da Yang, Ai Ying Wang, Jiao Lin Zhang, Corey J.A. Bradshaw, Guang You Hao

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The distribution limits of many plants are dictated by environmental conditions and species' functional traits. While many studies have evaluated how plant distribution is driven by environmental conditions, there are not many studies investigating xylem vessel properties with altitude, and whether these traits correlate with altitudinal distribution of tree. Here, we investigated the upper limits of distribution for ten deciduous broadleaf tree species from three temperate montane forest communities along a large elevational gradient on the north-facing slope of Changbai Mountain in Northeast China. We measured stem xylem traits associated with a species' ability to transport water and resist freezing-induced cavitation that theoretically represent important adaptations to changes in climatic conditions along the elevational gradient. Hydraulically weighted vessel diameter (Dh) was negatively correlated with with the upper limit across the ten studied tree species; however, the correlation seems to be driven by the large differences between ring-and diffuse-porous tree species groups. The ring-porous tree species (e.g., Fraxinus mandshurica Rupr., Maackia amurensis Rupr. et Maxim., and Phellodendron amurense Rupr.) had considerably wider vessels than the diffuse-porous species and were all limited to low-elevation communities. The coefficient of variation (CV) for Dh was 0.53 among the 10 studied species, while the intraspecific analysis showed that the highest CV was only 0.22 among the 10 species. We found no evidence of a relationship between Dh and the upper limits across the seven diffuse-porous species. In contrast to elevation, hydraulic-related xylem traits had no clear patterns of change with precipitation, indicating that hydraulic functionality was largely decoupled from the influences of precipitation in the study area. This finding suggests that xylem traits are associated with altitudinal limits of species distribution, which is mostly evidenced by the contrasts between ring-and diffuse-porous species in xylem anatomy and their altitudinal distributions.

Original languageEnglish
Article number349
Number of pages14
JournalForests
Volume11
Issue number3
DOIs
Publication statusPublished - 1 Mar 2020

Bibliographical note

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Keywords

  • Elevation
  • Freezing stress
  • Functional traits
  • Species distribution
  • Xylem anatomy

Fingerprint Dive into the research topics of 'Variation in stem xylem traits is related to differentiation of upper limits of tree species along an elevational gradient'. Together they form a unique fingerprint.

Cite this