Varietal Differentiation of Grape Juice Based on the Analysis of Near- and Mid-infrared Spectral Data

Danial Cozzolino, Wieslawa Cynkar, Nevil Shah, Paul Smith

    Research output: Contribution to journalArticle

    24 Citations (Scopus)

    Abstract

    The aim of this study was to evaluate the usefulness of visible (VIS), near-infrared reflectance (NIR) and mid-infrared (MIR) spectroscopy combined with pattern recognition methods as tools to differentiate grape juice samples from commercial Australian Chardonnay (n = 121) and Riesling (n = 91) varieties. Principal component analysis (PCA), partial least squares discriminant analysis and linear discriminant analysis (LDA) were applied to classified grape juice samples according to variety based on both NIR and MIR spectra using full cross-validation (leave-one-out) as a validation method. Overall, LDA models correctly classify 86% and 80% of the grape juice samples according to variety using MIR and VIS-NIR, respectively. The results from this study demonstrated that spectral differences exist between the juice samples from different varietal origins and confirmed that the infrared (IR) spectrum contains information able to discriminate among samples. Furthermore, analysis and interpretation of the eigenvectors from the PCA models developed verified that the IR spectrum of the grape juice has enough information to allow the prediction of the variety. These results also suggested that IR spectroscopy coupled with pattern recognition methods holds the necessary information for a successful classification of juice samples of different varieties.

    Original languageEnglish
    Pages (from-to)381-387
    Number of pages7
    JournalFood Analytical Methods
    Volume5
    Issue number3
    DOIs
    Publication statusPublished - 2012

    Fingerprint Dive into the research topics of 'Varietal Differentiation of Grape Juice Based on the Analysis of Near- and Mid-infrared Spectral Data'. Together they form a unique fingerprint.

  • Cite this