Ventilatory responses to inspiratory threshold loading and role of muscle fatigue in task failure

P. R. Eastwood, D. R. Hillman, K. E. Finucane

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)


To examine respiratory muscle recruitment pattern during inspiratory loading and role of fatigue in limiting endurance, we studied seven normal subjects on 17 ± 6 days during breathing against progressive inspiratory threshold load. Threshold pressure (Pth) was progressively increased 14 ± 5 cmH2O every 2 min until voluntary cessation (task failure). Subjects could adopt any breathing pattern. Tidal volume (VT), chest wall motion, end-tidal PCO2, and arterial O2 saturation were measured. At moderate loads [50-75% of maximum Pth (Pth(max)], inspiratory time (TI) decreased and VT/TI and expiratory time increased, increasing time for recovery of muscles between inspirations. At high loads (> 75% Pth(max)), VT/TI decreased, which, with progressive decrease in end-expiratory lung volume (EELV) throughout, increased potential for inspiratory force development. Progressive hypoxia and hypercapnia occurred at higher work loads. Immediately after task failure all subjects could recover at high loads and still reachieve initial Pth(max) on reimposition of progressive loading. Respiratory pressures were measured in subgroup of three subjects: transdiaphragmatic pressure response to 0.1- ms bilateral supramaximal phrenic nerve stimulation at end expiration initially increased with increasing load/decreasing EELV, consistent with increasing mechanical advantage of diaphragm, but decreased at highest loads, suggesting diaphragm fatigue. Full recovery had not occurred at 30 min after task failure. We demonstrated that progressive threshold loading is associated with systematic changes in breathing pattern that act to optimize muscle strength and increase endurance. Task failure occurred when these compensatory mechanisms were maximal. Inspiratory muscles appeared relatively resistant to fatigue, which was late but persistent.

Original languageEnglish
Pages (from-to)185-195
Number of pages11
JournalJournal of Applied Physiology
Issue number1
Publication statusPublished - 1 Jan 1994
Externally publishedYes


  • breathing pattern
  • diaphragm
  • respiratory muscles


Dive into the research topics of 'Ventilatory responses to inspiratory threshold loading and role of muscle fatigue in task failure'. Together they form a unique fingerprint.

Cite this