Verification of predicted knee replacement kinematics during simulated gait in the Kansas Knee Simulator

J Halloran, C Clary, L Maletsky, Mark Taylor, A Petrella, P Rullkoetter

    Research output: Contribution to journalArticlepeer-review

    61 Citations (Scopus)

    Abstract

    Evaluating total knee replacement kinematics and contact pressure distributions is an important element of preclinical assessment of implant designs. Although physical testing is essential in the evaluation process, validated computational models can augment these experiments and efficiently evaluate perturbations of the design or surgical variables. The objective of the present study was to perform an initial kinematic verification of a dynamic finite element model of the Kansas knee simulator by comparing predicted tibioand patellofemoral kinematics with experimental measurements during force-controlled gait simulation. A current semiconstrained, cruciate-retaining, fixed-bearing implant mounted in aluminum fixtures was utilized. An explicit finite element model of the simulator was developed from measured physical properties of the machine, and loading conditions were created from the measured experimental feedback data. The explicit finite element model allows both rigid body and fully deformable solutions to be chosen based on the application of interest. Six degrees-of-freedom kinematics were compared for both tibio- and patellofemoral joints during gait loading, with an average root mean square (rms) translational error of 1.1 mm and rotational rms error of 1.3 deg. Model sensitivity to interface friction and damping present in the experimental joints was also evaluated and served as a secondary goal of this paper. Modifying the metal-polyethylene coefficient of friction from 0.1 to 0.01 varied the patellar flexion-extension and tibiofemoral anterior-posterior predictions by 7 deg and 2 mm, respectively, while other kinematic outputs were largely insensitive.

    Original languageEnglish
    Pages (from-to)081010
    Number of pages6
    JournalJournal of Biomechanical Engineering
    Volume132
    Issue number8
    DOIs
    Publication statusPublished - 1 Aug 2010

    Keywords

    • Contact mechanics
    • Finite element model
    • Kinematics
    • Knee mechanics
    • TKR

    Fingerprint Dive into the research topics of 'Verification of predicted knee replacement kinematics during simulated gait in the Kansas Knee Simulator'. Together they form a unique fingerprint.

    Cite this