TY - JOUR
T1 - Wastepaper fiber-reinforced concrete containing metakaolin: Effect on fracture behavior
AU - Rezaei Shahmirzadi, Mohsen
AU - Gholampour, Aliakbar
AU - Hosseini, Seyed Amirhossein
AU - Ngo, Tuan D.
AU - Nematzadeh, Mahdi
PY - 2024/8
Y1 - 2024/8
N2 - Plasterboard, a commonly utilized construction material, comprises a gypsum core nestled between two paper layers. Gypsum after demolition of plasterboards is a recyclable waste that has been reused into new plasterboard or other purposes such as agricultural products. However, there is a lack of understanding on the potential for recycling the paper layers. This study investigates the use of wastepaper fibers, obtained from the paper layers, as a reinforcing material and metakaolin as a partial cement replacement material in concrete. This study demonstrates the ability of the paper from waste plasterboard for reinforcing concrete. Wastepaper fibers were used at different concentrations ranging from 0 to 2.5% by weight of binder. Bending test was conducted for assessing fracture behavior of concretes, including load bearing capacity, modulus of rupture, crack mouth opening displacement (CMOD) at the load bearing capacity, fracture toughness, and fracture energy. Slump, axial compression, and scanning electron microscopy (SEM) were also conducted on the concretes. It is found that incorporating wastepaper fiber by up to an optimum content of 1.5% results in an increase in the compressive strength (57%), flexural load bearing capacity and modulus of rupture (31%), CMOD displacement at load capacity (14%), fracture toughness (37%), and fracture energy (73%) of the metakaolin-based concrete. However, further increase in the wastepaper fiber content results in decreased mechanical properties of the concrete, which is due to the fiber agglomeration and non-uniform distribution within the concrete matrix. Based on the results, the concrete with 20% metakaolin and 1.5% wastepaper fiber experiences similar mechanical properties to the conventional concrete. The results of this study underscore the substantial potential of leveraging waste materials such as wastepaper and by-products like metakaolin to diminish reliance on conventional cement. This approach not only enhances the mechanical properties of concrete but also fosters sustainable building practices by promoting the recycling of waste materials, reducing carbon footprint, and mitigating the environmental impacts inherent in traditional concrete production.
AB - Plasterboard, a commonly utilized construction material, comprises a gypsum core nestled between two paper layers. Gypsum after demolition of plasterboards is a recyclable waste that has been reused into new plasterboard or other purposes such as agricultural products. However, there is a lack of understanding on the potential for recycling the paper layers. This study investigates the use of wastepaper fibers, obtained from the paper layers, as a reinforcing material and metakaolin as a partial cement replacement material in concrete. This study demonstrates the ability of the paper from waste plasterboard for reinforcing concrete. Wastepaper fibers were used at different concentrations ranging from 0 to 2.5% by weight of binder. Bending test was conducted for assessing fracture behavior of concretes, including load bearing capacity, modulus of rupture, crack mouth opening displacement (CMOD) at the load bearing capacity, fracture toughness, and fracture energy. Slump, axial compression, and scanning electron microscopy (SEM) were also conducted on the concretes. It is found that incorporating wastepaper fiber by up to an optimum content of 1.5% results in an increase in the compressive strength (57%), flexural load bearing capacity and modulus of rupture (31%), CMOD displacement at load capacity (14%), fracture toughness (37%), and fracture energy (73%) of the metakaolin-based concrete. However, further increase in the wastepaper fiber content results in decreased mechanical properties of the concrete, which is due to the fiber agglomeration and non-uniform distribution within the concrete matrix. Based on the results, the concrete with 20% metakaolin and 1.5% wastepaper fiber experiences similar mechanical properties to the conventional concrete. The results of this study underscore the substantial potential of leveraging waste materials such as wastepaper and by-products like metakaolin to diminish reliance on conventional cement. This approach not only enhances the mechanical properties of concrete but also fosters sustainable building practices by promoting the recycling of waste materials, reducing carbon footprint, and mitigating the environmental impacts inherent in traditional concrete production.
KW - concrete
KW - crack mouth opening displacement
KW - fracture behavior
KW - fracture toughness
KW - plasterboard
KW - wastepaper fiber
UR - http://www.scopus.com/inward/record.url?scp=85181878219&partnerID=8YFLogxK
U2 - 10.1002/suco.202300849
DO - 10.1002/suco.202300849
M3 - Article
AN - SCOPUS:85181878219
SN - 1464-4177
VL - 25
SP - 2931
EP - 2946
JO - Structural Concrete
JF - Structural Concrete
IS - 4
ER -