Abstract
Current forensic DNA profiling kits and techniques enable the detection of trace amounts of DNA. With advancements in kit sensitivity, there is an increased probability of detecting DNA from contamination. Research into DNA transfer within operational forensic laboratories provides insight into the possible mechanisms that may lead to exhibit contamination. To gain a greater understanding of the potential for evidence bags to act as DNA transfer vectors, the level of DNA accumulating on the exterior of evidence bags during the exhibit examination process was investigated. The exterior of 60 evidence bags were tapelifted before and after the examination of the exhibit inside of the bag resulting in 120 DNA profiles. These DNA profiles were compared to DNA profiles of staff working within the building and samples taken from the exhibit inside the bag. Common DNA profile contributors from each sample were also identified through STRmix™ mixture to mixture analysis. The average DNA quantity and number of profile contributors was higher in samples taken from the bag before exhibit examination than after examination. Fifty six percent of all samples taken identified a match between DNA recovered from the evidence bag and at least one staff member. On 11 bags, a common contributor was identified between the exhibit in the bag and the exhibit package post-examination. In one instance a DNA profile, matching that of a donor, on the exhibit bag before examination was also detected on a sample taken from the exhibit, raising the possibility of outer bag-to-exhibit DNA contamination. This study demonstrates that operational forensic laboratories must consider exhibit packages as a potential source of DNA contamination and evaluate their exhibit handling and storage procedures accordingly.
Original language | English |
---|---|
Article number | 102652 |
Number of pages | 10 |
Journal | Forensic Science International: Genetics |
Volume | 57 |
DOIs | |
Publication status | Published - Mar 2022 |
Keywords
- DNA contamination
- DNA transfer
- Exhibit
- Exhibit packaging
- STR DNA profiling
- Trace DNA